{"title":"Thermal limitations in air-cooled axial flux in-wheel motors for urban mobility vehicles: A preliminary analysis","authors":"R. Camilleri, D. Howey, M. Mcculloch","doi":"10.1109/ESARS.2012.6387494","DOIUrl":null,"url":null,"abstract":"The idea of having electric personal urban mobility vehicles that can be better supported within an urban infrastructure has been suggested for some time. Air-cooled in-wheel motors are preferred as they allow more passenger space and remove any plumbing requirements within the vehicle. This paper shows a preliminary analysis of the thermal limitations for axial flux internal rotor (AFIR) and axial flux internal stator (AFIS) machines. It is shown that AFIR type air-cooled machines favours low speed machines with traction power between 3.75kW-5kW and motor diameters between 13\" and 15\". This forces the traction power to be distributed on 3 or 4 wheels. Conversely the dependence of the cooling on the rotational speed in AFIS air-cooled machines favours high speed geared motors motor powers up to 7.5kW for a motor diameter of 15\". This enables the traction power to be distributed on 2 wheels or more.","PeriodicalId":243822,"journal":{"name":"2012 Electrical Systems for Aircraft, Railway and Ship Propulsion","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Electrical Systems for Aircraft, Railway and Ship Propulsion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESARS.2012.6387494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20
Abstract
The idea of having electric personal urban mobility vehicles that can be better supported within an urban infrastructure has been suggested for some time. Air-cooled in-wheel motors are preferred as they allow more passenger space and remove any plumbing requirements within the vehicle. This paper shows a preliminary analysis of the thermal limitations for axial flux internal rotor (AFIR) and axial flux internal stator (AFIS) machines. It is shown that AFIR type air-cooled machines favours low speed machines with traction power between 3.75kW-5kW and motor diameters between 13" and 15". This forces the traction power to be distributed on 3 or 4 wheels. Conversely the dependence of the cooling on the rotational speed in AFIS air-cooled machines favours high speed geared motors motor powers up to 7.5kW for a motor diameter of 15". This enables the traction power to be distributed on 2 wheels or more.