Rare Category Characterization

Jingrui He, Hanghang Tong, J. Carbonell
{"title":"Rare Category Characterization","authors":"Jingrui He, Hanghang Tong, J. Carbonell","doi":"10.1109/ICDM.2010.154","DOIUrl":null,"url":null,"abstract":"Rare categories abound and their characterization has heretofore received little attention. Fraudulent banking transactions, network intrusions, and rare diseases are examples of rare classes whose detection and characterization are of high value. However, accurate characterization is challenging due to high-skewness and non-separability from majority classes, e.g., fraudulent transactions masquerade as legitimate ones. This paper proposes the RACH algorithm by exploring the compactness property of the rare categories. It is based on an optimization framework which encloses the rare examples by a minimum-radius hyper ball. The framework is then converted into a convex optimization problem, which is in turn effectively solved in its dual form by the projected sub gradient method. RACH can be naturally kernelized. Experimental results validate the effectiveness of RACH.","PeriodicalId":294061,"journal":{"name":"2010 IEEE International Conference on Data Mining","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2010.154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

Abstract

Rare categories abound and their characterization has heretofore received little attention. Fraudulent banking transactions, network intrusions, and rare diseases are examples of rare classes whose detection and characterization are of high value. However, accurate characterization is challenging due to high-skewness and non-separability from majority classes, e.g., fraudulent transactions masquerade as legitimate ones. This paper proposes the RACH algorithm by exploring the compactness property of the rare categories. It is based on an optimization framework which encloses the rare examples by a minimum-radius hyper ball. The framework is then converted into a convex optimization problem, which is in turn effectively solved in its dual form by the projected sub gradient method. RACH can be naturally kernelized. Experimental results validate the effectiveness of RACH.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
稀有品类特征
罕见的类别比比皆是,它们的特征迄今为止很少受到关注。欺诈性银行交易、网络入侵和罕见疾病是罕见类的例子,其检测和表征具有很高的价值。然而,由于高偏度和与大多数类别的不可分离性,例如,欺诈性交易伪装成合法交易,因此准确的特征是具有挑战性的。本文通过研究稀有类别的紧性,提出了RACH算法。它基于一个优化框架,该框架用最小半径超球包围罕见的例子。然后将该框架转化为一个凸优化问题,利用投影次梯度法以对偶形式有效地求解该问题。RACH可以被自然地kernel化。实验结果验证了RACH的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Generalized Probabilistic Matrix Factorizations for Collaborative Filtering MoodCast: Emotion Prediction via Dynamic Continuous Factor Graph Model Finding Local Anomalies in Very High Dimensional Space Efficient Probabilistic Latent Semantic Analysis with Sparsity Control Enhancing Single-Objective Projective Clustering Ensembles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1