S. Kelly, P. Doyle, A. Priplata, Oscar Mendoza, J. Wyatt
{"title":"Optimal primary coil size for wireless power telemetry to medical implants","authors":"S. Kelly, P. Doyle, A. Priplata, Oscar Mendoza, J. Wyatt","doi":"10.1109/ISABEL.2010.5702795","DOIUrl":null,"url":null,"abstract":"A retinal prosthesis telemetry system is examined, and several methods are explored to optimize the size of the external primary telemetry coil to maximize the wireless delivery of power to an implanted secondary coil of constrained size. A simplified version of the Biot-Savart Law is used to give a first-pass optimal primary coil size for a small secondary coil. Numerical integration is then used to improve the optimization for larger secondary coils, and this calculation is repeated across a range of secondary coil radii. Finally, the effects of eye rotation angle are explored, with the future goal of expanding the optimization techniques to cover the predicted range of angular eye excursions.","PeriodicalId":165367,"journal":{"name":"2010 3rd International Symposium on Applied Sciences in Biomedical and Communication Technologies (ISABEL 2010)","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 3rd International Symposium on Applied Sciences in Biomedical and Communication Technologies (ISABEL 2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISABEL.2010.5702795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
A retinal prosthesis telemetry system is examined, and several methods are explored to optimize the size of the external primary telemetry coil to maximize the wireless delivery of power to an implanted secondary coil of constrained size. A simplified version of the Biot-Savart Law is used to give a first-pass optimal primary coil size for a small secondary coil. Numerical integration is then used to improve the optimization for larger secondary coils, and this calculation is repeated across a range of secondary coil radii. Finally, the effects of eye rotation angle are explored, with the future goal of expanding the optimization techniques to cover the predicted range of angular eye excursions.