Solving multiobjective multicast routing problem with a new ant colony optimization approach

D. Pinto, B. Barán
{"title":"Solving multiobjective multicast routing problem with a new ant colony optimization approach","authors":"D. Pinto, B. Barán","doi":"10.1145/1168117.1168120","DOIUrl":null,"url":null,"abstract":"This work presents two multiobjective algorithms for Multicast Traffic Engineering. The proposed algorithms are new versions of the Multi-Objective Ant Colony System (MOACS) and the Max-Min Ant System (MMAS), based on Ant Colony Optimization (ACO). Both ACO algorithms simultaneously optimize maximum link utilization and cost of a multicast routing tree, as well as average delay and maximum end-to-end delay, for the first time using an ACO approach. In this way, a set of optimal solutions, know as Pareto set is calculated in only one run of the algorithms, without a priori restrictions. Experimental results show a promising performance of both proposed algorithms for a multicast traffic engineering optimization, when compared to a recently published Multiobjective Multicast Algorithm (MMA), specially designed for Multiobjective Multicast Routing Problems.","PeriodicalId":415618,"journal":{"name":"International Latin American Networking Conference","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"71","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Latin American Networking Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1168117.1168120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 71

Abstract

This work presents two multiobjective algorithms for Multicast Traffic Engineering. The proposed algorithms are new versions of the Multi-Objective Ant Colony System (MOACS) and the Max-Min Ant System (MMAS), based on Ant Colony Optimization (ACO). Both ACO algorithms simultaneously optimize maximum link utilization and cost of a multicast routing tree, as well as average delay and maximum end-to-end delay, for the first time using an ACO approach. In this way, a set of optimal solutions, know as Pareto set is calculated in only one run of the algorithms, without a priori restrictions. Experimental results show a promising performance of both proposed algorithms for a multicast traffic engineering optimization, when compared to a recently published Multiobjective Multicast Algorithm (MMA), specially designed for Multiobjective Multicast Routing Problems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用蚁群优化方法求解多目标组播路由问题
本文提出了两种多目标算法用于组播流量工程。提出的算法是基于蚁群优化(ACO)的多目标蚁群系统(MOACS)和最大最小蚁群系统(MMAS)的新版本。两种蚁群算法首次使用蚁群算法同时优化了组播路由树的最大链路利用率和成本,以及平均延迟和最大端到端延迟。通过这种方式,一组最优解,即帕累托集,在没有先验限制的情况下,只需运行一次算法即可计算出来。实验结果表明,与最近发表的专门针对多目标组播路由问题设计的多目标组播算法(MMA)相比,这两种算法在组播流量工程优化方面具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Drop Less Known strategy for buffer management in DTN Nodes Buffer Management in Opportunistic Networking On the Stability of an Un-Coordinated Solution for Channel Allocation in Dense Wireless Networks Plan Ceibal's Wireless Network for the Implementation of the 1:1 Educational Model Diameter-Constrained Reliability: Complexity, Factorization and Exact computation in Weak Graphs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1