HornFuzz: Fuzzing CHC solvers

Anzhela Sukhanova, Valentyn Sobol
{"title":"HornFuzz: Fuzzing CHC solvers","authors":"Anzhela Sukhanova, Valentyn Sobol","doi":"10.1145/3593434.3593455","DOIUrl":null,"url":null,"abstract":"Many advanced program analysis and verification methods are based on solving systems of Constrained Horn Clauses (CHC). Testing CHC solvers is very important, as correctness of their work determines whether bugs in the analyzed programs are detected or missed. One of the well-established and efficient methods of automated software testing is fuzzing: analyzing the reactions of programs to random input data. Currently, there are no fuzzers for CHC solvers, and fuzzers for SMT solvers are not efficient in CHC solver testing, since they do not consider CHC specifics. In this paper, we present HornFuzz, a mutation-based gray-box fuzzing technique for detecting bugs in CHC solvers based on the idea of metamorphic testing. We evaluated our fuzzer on one of the highest performing CHC solvers, Spacer, and found a handful of bugs in Spacer. In particular, some discovered problems are so serious that they require fixes with significant changes to the solver.","PeriodicalId":178596,"journal":{"name":"Proceedings of the 27th International Conference on Evaluation and Assessment in Software Engineering","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 27th International Conference on Evaluation and Assessment in Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3593434.3593455","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Many advanced program analysis and verification methods are based on solving systems of Constrained Horn Clauses (CHC). Testing CHC solvers is very important, as correctness of their work determines whether bugs in the analyzed programs are detected or missed. One of the well-established and efficient methods of automated software testing is fuzzing: analyzing the reactions of programs to random input data. Currently, there are no fuzzers for CHC solvers, and fuzzers for SMT solvers are not efficient in CHC solver testing, since they do not consider CHC specifics. In this paper, we present HornFuzz, a mutation-based gray-box fuzzing technique for detecting bugs in CHC solvers based on the idea of metamorphic testing. We evaluated our fuzzer on one of the highest performing CHC solvers, Spacer, and found a handful of bugs in Spacer. In particular, some discovered problems are so serious that they require fixes with significant changes to the solver.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
模糊CHC求解器
许多先进的程序分析和验证方法都是基于求解约束角子句(CHC)系统。测试CHC解算器非常重要,因为它们工作的正确性决定了被分析程序中的错误是否被检测或遗漏。自动化软件测试的一种行之有效的有效方法是模糊测试:分析程序对随机输入数据的反应。目前,没有用于CHC解算器的模糊器,并且SMT解算器的模糊器在CHC解算器测试中效率不高,因为它们不考虑CHC的具体情况。在本文中,我们提出了HornFuzz,一种基于变异测试思想的灰盒模糊检测技术,用于检测CHC求解器中的错误。我们在性能最高的CHC解算器之一Spacer上评估了我们的fuzzer,并在Spacer中发现了一些bug。特别是,一些发现的问题非常严重,需要通过对求解器进行重大更改来修复。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Classification-based Static Collection Selection for Java: Effectiveness and Adaptability Decentralised Autonomous Organisations for Public Procurement Analyzing the Resource Usage Overhead of Mobile App Development Frameworks Investigation of Security-related Commits in Android Apps Exploring the UK Cyber Skills Gap through a mapping of active job listings to the Cyber Security Body of Knowledge (CyBOK)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1