Differentiation of neural stem cells regulated by three-dimensional tissue shape

Yuki Matsushiro, M. Kato‐Negishi, H. Onoe
{"title":"Differentiation of neural stem cells regulated by three-dimensional tissue shape","authors":"Yuki Matsushiro, M. Kato‐Negishi, H. Onoe","doi":"10.1109/TRANSDUCERS.2017.7994044","DOIUrl":null,"url":null,"abstract":"This paper describes the effect of three-dimensional (3D) tissue shape on differentiation ratio of neurons. We cultured mouse neural stem cells (mNSCs) in the closed agarose microchamber sealed with an agarose sheet. We succeeded in fabricating mNSC tissues of various 3D shapes in the closed agarose microchamber and induced differentiation of the lane-shaped mNSC tissues to neurons and glial cells. We confirmed that tissues of thin width and thickness have higher differentiation ratio of neurons than that of spherical-shaped tissue, by changing the width and thickness of the lane shaped tissues.","PeriodicalId":174774,"journal":{"name":"2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TRANSDUCERS.2017.7994044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper describes the effect of three-dimensional (3D) tissue shape on differentiation ratio of neurons. We cultured mouse neural stem cells (mNSCs) in the closed agarose microchamber sealed with an agarose sheet. We succeeded in fabricating mNSC tissues of various 3D shapes in the closed agarose microchamber and induced differentiation of the lane-shaped mNSC tissues to neurons and glial cells. We confirmed that tissues of thin width and thickness have higher differentiation ratio of neurons than that of spherical-shaped tissue, by changing the width and thickness of the lane shaped tissues.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三维组织形态调控神经干细胞的分化
本文描述了三维组织形态对神经元分化率的影响。我们在琼脂糖片封闭的琼脂糖微室中培养小鼠神经干细胞(mNSCs)。我们成功地在封闭的琼脂糖微室中制备了各种三维形状的间充质干细胞组织,并诱导其向神经元和神经胶质细胞分化。我们通过改变车道状组织的宽度和厚度,证实了宽度和厚度较薄的组织比球形组织有更高的神经元分化率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Full integration of a dielectric elastomer actuator with a flexible 1 kV thin-film transistor Fully casted stretchable triboelectric device for energy harvesting and sensing made of elastomeric materials Local magnetization and sensing of flexible magnetic tag for long-term monitoring under wet environment Broadband frequency viscositymeasurement using low TCF shear mode resonators consisting of C-axis tilted scaln thin film on thick at-cut quartz plate Analysis of environmental bacteria at single-cell level
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1