Implementation of Speech to Text Conversion Using Hidden Markov Model

A. Elakkiya, K. Surya, Konduru Venkatesh, S. Aakash
{"title":"Implementation of Speech to Text Conversion Using Hidden Markov Model","authors":"A. Elakkiya, K. Surya, Konduru Venkatesh, S. Aakash","doi":"10.1109/ICECA55336.2022.10009602","DOIUrl":null,"url":null,"abstract":"Deep learning is revolutionary when used to transcribe spoken language into text that computers can read with the same intent as human readers. The fundamental idea is to give intelligent systems with human language as data that may be utilized in various domains. A speech-to-text synthesizer is a piece of software that can convert an audio file into text using Digital Signal Processing (DSP) algorithms that analyze and process the speech signal in the audio file. The objective of Speech To Text (STT) is to convert audio input from a user or computer into readable text. The STT is proposed to be transformed using the Hidden Markov Model (HMM) method. The development of a speech-to-text synthesizer will be a tremendous advantage for the visually handicapped and will make reading lengthy texts much easier.","PeriodicalId":356949,"journal":{"name":"2022 6th International Conference on Electronics, Communication and Aerospace Technology","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 6th International Conference on Electronics, Communication and Aerospace Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECA55336.2022.10009602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Deep learning is revolutionary when used to transcribe spoken language into text that computers can read with the same intent as human readers. The fundamental idea is to give intelligent systems with human language as data that may be utilized in various domains. A speech-to-text synthesizer is a piece of software that can convert an audio file into text using Digital Signal Processing (DSP) algorithms that analyze and process the speech signal in the audio file. The objective of Speech To Text (STT) is to convert audio input from a user or computer into readable text. The STT is proposed to be transformed using the Hidden Markov Model (HMM) method. The development of a speech-to-text synthesizer will be a tremendous advantage for the visually handicapped and will make reading lengthy texts much easier.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用隐马尔可夫模型实现语音到文本的转换
深度学习是革命性的,它可以将口语转化为文本,让计算机以与人类读者相同的意图阅读。其基本思想是将人类语言作为数据提供给智能系统,这些数据可用于各个领域。语音到文本合成器是一种软件,它可以使用数字信号处理(DSP)算法将音频文件转换为文本,该算法分析和处理音频文件中的语音信号。语音到文本(STT)的目标是将来自用户或计算机的音频输入转换为可读的文本。提出用隐马尔可夫模型(HMM)方法对STT进行变换。语音-文本合成器的开发对于视觉障碍的人来说将是一个巨大的优势,它将使阅读冗长的文本变得更加容易。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-Objective Artificial Flora Algorithm Based Optimal Handover Scheme for LTE-Advanced Networks Named Entity Recognition using CRF with Active Learning Algorithm in English Texts FPGA Implementation of Lattice-Wave Half-Order Digital Integrator using Radix-$2^{r}$ Digit Recoding Green Cloud Computing- Next Step Towards Eco-friendly Work Stations Diabetes Prediction using Support Vector Machine, Naive Bayes and Random Forest Machine Learning Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1