Christian Clason, B. Kaltenbacher, I. Lasiecka, S. Veljović
{"title":"Optimal boundary control for equations of nonlinear acoustics","authors":"Christian Clason, B. Kaltenbacher, I. Lasiecka, S. Veljović","doi":"10.1109/MMAR.2010.5587247","DOIUrl":null,"url":null,"abstract":"Motivated by a medical application from lithotripsy, we study an optimal boundary control problem given by Westervelt equation − <sup>1</sup>/c<sup>2</sup>D<sup>2</sup><inf>t</inf> u + Δu + b/c<sup>2</sup>Δ(D<inf>t</inf> u) = − β<inf>a</inf>/ρc<sup>4</sup>D<sup>2</sup><inf>t</inf> u<sup>2</sup> in (0, T) × Ω (1) modeling the nonlinear evolution of the acoustic pressure u in a smooth, bounded domain Ω ⊂ R<sup>d</sup>, d ∊ {1, 2, 3}. Here c > 0 is the speed of sound, b > 0 the diffusivity of sound, ρ > 0 the mass density and β<inf>a</inf> > 1 the parameter of nonlinearity. We study the optimization problem for existence of an optimal control and derive the first-order necessary optimality conditions. In addition, all results are extended for the more general Kuznetsov equation D<sup>2</sup><inf>t</inf>ψ − c<sup>2</sup>Δψ = D<inf>t</inf>(bΔψ + 1/c<sup>2</sup> B/2A (D<inf>t</inf>ψ)<sup>2</sup> + |∇ψ|<sup>2</sup>) (2) given in terms of the acoustic velocity potential ψ.","PeriodicalId":336219,"journal":{"name":"2010 15th International Conference on Methods and Models in Automation and Robotics","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 15th International Conference on Methods and Models in Automation and Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMAR.2010.5587247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Motivated by a medical application from lithotripsy, we study an optimal boundary control problem given by Westervelt equation − 1/c2D2t u + Δu + b/c2Δ(Dt u) = − βa/ρc4D2t u2 in (0, T) × Ω (1) modeling the nonlinear evolution of the acoustic pressure u in a smooth, bounded domain Ω ⊂ Rd, d ∊ {1, 2, 3}. Here c > 0 is the speed of sound, b > 0 the diffusivity of sound, ρ > 0 the mass density and βa > 1 the parameter of nonlinearity. We study the optimization problem for existence of an optimal control and derive the first-order necessary optimality conditions. In addition, all results are extended for the more general Kuznetsov equation D2tψ − c2Δψ = Dt(bΔψ + 1/c2 B/2A (Dtψ)2 + |∇ψ|2) (2) given in terms of the acoustic velocity potential ψ.