Effective Mean-Field Inference Method for Nonnegative Boltzmann Machines

Muneki Yasuda
{"title":"Effective Mean-Field Inference Method for Nonnegative Boltzmann Machines","authors":"Muneki Yasuda","doi":"10.1109/ICPR.2014.619","DOIUrl":null,"url":null,"abstract":"Nonnegative Boltzmann machines (NNBMs) are recurrent probabilistic neural network models that can describe multi-modal nonnegative data. NNBMs form rectified Gaussian distributions that appear in biological neural network models, positive matrix factorization, nonnegative matrix factorization, and so on. In this paper, an effective inference method for NNBMs is proposed that uses the mean-field method, referred to as the Thou less-Anderson-Palmer equation, and the diagonal consistency method, which was recently proposed.","PeriodicalId":142159,"journal":{"name":"2014 22nd International Conference on Pattern Recognition","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 22nd International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2014.619","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nonnegative Boltzmann machines (NNBMs) are recurrent probabilistic neural network models that can describe multi-modal nonnegative data. NNBMs form rectified Gaussian distributions that appear in biological neural network models, positive matrix factorization, nonnegative matrix factorization, and so on. In this paper, an effective inference method for NNBMs is proposed that uses the mean-field method, referred to as the Thou less-Anderson-Palmer equation, and the diagonal consistency method, which was recently proposed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非负玻尔兹曼机的有效平均场推理方法
非负玻尔兹曼机(NNBMs)是一种能够描述多模态非负数据的递归概率神经网络模型。NNBMs形成校正高斯分布,出现在生物神经网络模型、正矩阵分解、非负矩阵分解等中。本文提出了一种有效的NNBMs推理方法,即利用平均场方法(即Thou - less-Anderson-Palmer方程)和最近提出的对角一致性方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Real-Time Tracking via Deformable Structure Regression Learning Traffic Camera Anomaly Detection Velocity-Based Multiple Change-Point Inference for Unsupervised Segmentation of Human Movement Behavior Volume Reconstruction for MRI Anomaly Detection through Spatio-temporal Context Modeling in Crowded Scenes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1