{"title":"An efficient auction mechanism for service chains in the NFV market","authors":"Sijia Gu, Zongpeng Li, Chuan Wu, Chuanhe Huang","doi":"10.1109/INFOCOM.2016.7524438","DOIUrl":null,"url":null,"abstract":"Network Function Virtualization (NFV) is emerging as a new paradigm for providing elastic network functions through flexible virtual network function (VNF) instances executed on virtualized computing platforms exemplified by cloud datacenters. In the new NFV market, well defined VNF instances each realize an atomic function that can be chained to meet user demands in practice. This work studies the dynamic market mechanism design for the transaction of VNF service chains in the NFV market, to help relinquish the full power of NFV. Combining the techniques of primal-dual approximation algorithm design with Myerson's characterization of truthful mechanisms, we design a VNF chain auction that runs efficiently in polynomial time, guarantees truthfulness, and achieves near-optimal social welfare in the NFV eco-system. Extensive simulation studies verify the efficacy of our auction mechanism.","PeriodicalId":274591,"journal":{"name":"IEEE INFOCOM 2016 - The 35th Annual IEEE International Conference on Computer Communications","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"58","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE INFOCOM 2016 - The 35th Annual IEEE International Conference on Computer Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFOCOM.2016.7524438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 58
Abstract
Network Function Virtualization (NFV) is emerging as a new paradigm for providing elastic network functions through flexible virtual network function (VNF) instances executed on virtualized computing platforms exemplified by cloud datacenters. In the new NFV market, well defined VNF instances each realize an atomic function that can be chained to meet user demands in practice. This work studies the dynamic market mechanism design for the transaction of VNF service chains in the NFV market, to help relinquish the full power of NFV. Combining the techniques of primal-dual approximation algorithm design with Myerson's characterization of truthful mechanisms, we design a VNF chain auction that runs efficiently in polynomial time, guarantees truthfulness, and achieves near-optimal social welfare in the NFV eco-system. Extensive simulation studies verify the efficacy of our auction mechanism.