Computing Popular Places Using Graphics Processors

Marta Fort, J. A. Sellarès, Nacho Valladares
{"title":"Computing Popular Places Using Graphics Processors","authors":"Marta Fort, J. A. Sellarès, Nacho Valladares","doi":"10.1109/ICDMW.2010.45","DOIUrl":null,"url":null,"abstract":"Mobile devices provide the availability of tracking and collecting trajectories of moving objects such as vehicles, people or animals. There exists a well-known collection of patterns which can occur for a subset of trajectories. Specifically we study the so-called Popular Places, that is regions that are visited by many distinct moving objects.We propose algorithms to efficiently compute different forms of reporting Popular Places, that take benefit of the Graphics Processing Unit parallelism capabilities. We also describe how to visualize the reported solutions. Finally we present and discuss experimentalresults obtained with the implementation of our algorithms.","PeriodicalId":170201,"journal":{"name":"2010 IEEE International Conference on Data Mining Workshops","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Data Mining Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2010.45","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Mobile devices provide the availability of tracking and collecting trajectories of moving objects such as vehicles, people or animals. There exists a well-known collection of patterns which can occur for a subset of trajectories. Specifically we study the so-called Popular Places, that is regions that are visited by many distinct moving objects.We propose algorithms to efficiently compute different forms of reporting Popular Places, that take benefit of the Graphics Processing Unit parallelism capabilities. We also describe how to visualize the reported solutions. Finally we present and discuss experimentalresults obtained with the implementation of our algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用图形处理器计算热门场所
移动设备提供了跟踪和收集移动物体(如车辆、人或动物)轨迹的可用性。存在一个众所周知的模式集合,这些模式可以出现在轨迹的子集中。具体来说,我们研究所谓的热门地点,即许多不同的移动物体访问的区域。我们提出算法来有效地计算不同形式的流行地点报告,利用图形处理单元的并行能力。我们还描述了如何可视化报告的解决方案。最后给出并讨论了算法实现的实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Quantum Path Integral Inspired Query Sequence Suggestion for User Search Task Simplification PTCR-Miner: Progressive Temporal Class Rule Mining for Multivariate Temporal Data Classification Bridging Folksonomies and Domain Ontologies: Getting Out Non-taxonomic Relations SIMPLE: Interactive Analytics on Patent Data Parallel EM-Clustering: Fast Convergence by Asynchronous Model Updates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1