{"title":"\"Understanding Understanding\" Across the Disciplines: Towards Strategies for Sustainable Engineering Education for the 21st Century","authors":"Cecilia Moloney","doi":"10.1109/TEE.2010.5508815","DOIUrl":null,"url":null,"abstract":"Sustainable engineering is commonly understood to refer to practices and processes which solve current problems without damaging or depleting resources needed in the future. In this paper, the meaning of sustainable engineering education is broadened to include the sustainability of the individual engineer over his or her lifetime. This paper proposes that there are two fundamental questions to be answered, one about the learning process within the engineering student (i.e. What is the student doing when learning engineering?), and one about the engineering community which is seeking to make that learning most effective (i.e. What collaborative structures within the engineering education community will lead to the most effective cumulative progress, both in the education of individual students, and in the enterprise of engineering in its widest sense within the history of humanity?) This paper provides preliminary answers to these questions in line with human cognitive models, and demonstrates that \"understanding understanding\" across engineering disciplines allows elements of sustainability to be introduced in engineering education (examples are given from electrical and computer engineering.) These answers point to a framework for change in engineering education, one which extends to collaboration between engineering and economics, law, business, and other sectors.","PeriodicalId":201873,"journal":{"name":"2010 IEEE Transforming Engineering Education: Creating Interdisciplinary Skills for Complex Global Environments","volume":"2012 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Transforming Engineering Education: Creating Interdisciplinary Skills for Complex Global Environments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TEE.2010.5508815","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Sustainable engineering is commonly understood to refer to practices and processes which solve current problems without damaging or depleting resources needed in the future. In this paper, the meaning of sustainable engineering education is broadened to include the sustainability of the individual engineer over his or her lifetime. This paper proposes that there are two fundamental questions to be answered, one about the learning process within the engineering student (i.e. What is the student doing when learning engineering?), and one about the engineering community which is seeking to make that learning most effective (i.e. What collaborative structures within the engineering education community will lead to the most effective cumulative progress, both in the education of individual students, and in the enterprise of engineering in its widest sense within the history of humanity?) This paper provides preliminary answers to these questions in line with human cognitive models, and demonstrates that "understanding understanding" across engineering disciplines allows elements of sustainability to be introduced in engineering education (examples are given from electrical and computer engineering.) These answers point to a framework for change in engineering education, one which extends to collaboration between engineering and economics, law, business, and other sectors.