A System Delay Monitor Exploiting Automatic Cell-Based Design Flow and Post-Silicon Calibration

Hayate Okuhara, Ryosuke Kazami, H. Amano
{"title":"A System Delay Monitor Exploiting Automatic Cell-Based Design Flow and Post-Silicon Calibration","authors":"Hayate Okuhara, Ryosuke Kazami, H. Amano","doi":"10.1109/MCSoC.2019.00012","DOIUrl":null,"url":null,"abstract":"In this work, we present a low-overhead performance monitor which can emulate the maximum operational frequency of a target system by utilizing a delay chain so as to achieve efficient adaptive voltage control. The proposed monitor can be fully built by logic cells provided by general PDKs; thus, an automatic cell-based design flow can be used for its implementation. In addition, interconnect delay behaviors can also be imitated by exploiting wires which are automatically routed. In order to validate our concept, the proposed monitor is fabricated with a 65-nm Fully Depleted Silicon on Insulator (FD-SOI) technology. Real chip experiments reveal that the automated layout design can achieve the reasonable ability to delay emulation. Indeed, when the maximum operational frequency of a CNN accelerator is emulated, the proposed SDM achieved several percents of the performance tracking error. Also, its power overhead is only few percents.","PeriodicalId":104240,"journal":{"name":"2019 IEEE 13th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 13th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MCSoC.2019.00012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we present a low-overhead performance monitor which can emulate the maximum operational frequency of a target system by utilizing a delay chain so as to achieve efficient adaptive voltage control. The proposed monitor can be fully built by logic cells provided by general PDKs; thus, an automatic cell-based design flow can be used for its implementation. In addition, interconnect delay behaviors can also be imitated by exploiting wires which are automatically routed. In order to validate our concept, the proposed monitor is fabricated with a 65-nm Fully Depleted Silicon on Insulator (FD-SOI) technology. Real chip experiments reveal that the automated layout design can achieve the reasonable ability to delay emulation. Indeed, when the maximum operational frequency of a CNN accelerator is emulated, the proposed SDM achieved several percents of the performance tracking error. Also, its power overhead is only few percents.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于自动单元设计流程和后硅校正的系统延迟监视器
在这项工作中,我们提出了一种低开销的性能监视器,它可以利用延迟链来模拟目标系统的最大工作频率,从而实现有效的自适应电压控制。所提出的监视器可以完全由一般pdk提供的逻辑单元构建;因此,可以使用基于单元格的自动设计流来实现它。此外,互连延迟行为也可以通过利用自动路由的导线来模拟。为了验证我们的概念,所提出的监视器是用65纳米完全耗尽绝缘体上硅(FD-SOI)技术制造的。实际芯片实验表明,自动化版图设计能够实现合理的延时仿真能力。实际上,当仿真CNN加速器的最大工作频率时,所提出的SDM实现了性能跟踪误差的几个百分点。此外,它的电力开销只有几个百分点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Algorithm to Determine Extended Edit Distance between Program Codes Smart Ontology-Based Event Identification Automatic Generation of Fill-in-the-Blank Programming Problems Prototype of FPGA Dynamic Reconfiguration Based-on Context-Oriented Programming An Efficient Implementation of a TAGE Branch Predictor for Soft Processors on FPGA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1