Space-Time Goal Oriented Error Estimation and Adaptivity for Discretization and Reduced Order Modeling Errors

J. Roth, H. Fischer, J. Thiele, U. Köcher, A. Fau, L. Chamoin, T. Wick
{"title":"Space-Time Goal Oriented Error Estimation and Adaptivity for Discretization and Reduced Order Modeling Errors","authors":"J. Roth, H. Fischer, J. Thiele, U. Köcher, A. Fau, L. Chamoin, T. Wick","doi":"10.23967/admos.2023.026","DOIUrl":null,"url":null,"abstract":"In this presentation, we present a uniform framework in which the dual-weighted residual (DWR) method is used for spatial and temporal discretization error control [1], as well as the control of the reduced order modeling error for the proper orthogonal decomposition (POD). In the first part of this presentation, the DWR method is applied to a space-time formulation of non-stationary Navier-Stokes flow. Tensor-product space-time finite elements are being used to discretize the variational formulation with discontinuous Galerkin finite elements in time and inf-sup stable Taylor-Hood finite element pairs in space. To estimate the error in a quantity of interest and drive adaptive refinement in time and space, we demonstrate how the DWR method for incompressible flow [2] can be extended to a partition of unity based error localization [3, 4]. Our methodology is being substantiated on the two dimensional flow around a cylinder benchmark problem. In the second","PeriodicalId":414984,"journal":{"name":"XI International Conference on Adaptive Modeling and Simulation","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"XI International Conference on Adaptive Modeling and Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23967/admos.2023.026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this presentation, we present a uniform framework in which the dual-weighted residual (DWR) method is used for spatial and temporal discretization error control [1], as well as the control of the reduced order modeling error for the proper orthogonal decomposition (POD). In the first part of this presentation, the DWR method is applied to a space-time formulation of non-stationary Navier-Stokes flow. Tensor-product space-time finite elements are being used to discretize the variational formulation with discontinuous Galerkin finite elements in time and inf-sup stable Taylor-Hood finite element pairs in space. To estimate the error in a quantity of interest and drive adaptive refinement in time and space, we demonstrate how the DWR method for incompressible flow [2] can be extended to a partition of unity based error localization [3, 4]. Our methodology is being substantiated on the two dimensional flow around a cylinder benchmark problem. In the second
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向空时目标的误差估计与自适应离散化与降阶建模误差
在本报告中,我们提出了一个统一的框架,其中双加权残差(DWR)方法用于时空离散化误差控制[1],以及适当正交分解(POD)的降阶建模误差控制。在本报告的第一部分,DWR方法应用于非平稳Navier-Stokes流的时空公式。用张量积空时有限元在时间上离散不连续的Galerkin有限元,在空间上离散不稳定的Taylor-Hood有限元对。为了估计感兴趣量的误差并在时间和空间上驱动自适应改进,我们演示了不可压缩流的DWR方法[2]如何扩展到基于单位的误差定位划分[3,4]。我们的方法在圆柱体周围的二维流动基准问题上得到了证实。在第二个
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Error Estimation for the Material Point and Particle in Cell Methods Dimension Reduction of Dynamic Superresolution and Application to Cell Tracking in PET Dimensionality reduction and physics-based manifold learning for parametric models in biomechanics and tissue engineering Modelling and Simulating Cities with Digital Twins The use of IoT technologies for advanced risk management in tailings dams
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1