Visual Saliency Based Aerial Video Summarization by Online Scene Classification

Jiewei Wang, Yunhong Wang, Zhaoxiang Zhang
{"title":"Visual Saliency Based Aerial Video Summarization by Online Scene Classification","authors":"Jiewei Wang, Yunhong Wang, Zhaoxiang Zhang","doi":"10.1109/ICIG.2011.43","DOIUrl":null,"url":null,"abstract":"Compared with traditional video summarization approaches, aerial video summarization is a new and challenging issue for its particular characteristics. Aerial video data is a massive data stream, without pre-edit structures such as sports or news video data, lack of camera motion such as zoom and pan. On account of these characteristics, we proposed a novel approach for summarization. First, we extract GIST features for each frame as the holistic scene representation. Then, we divide aerial video into temporal segments representing a visual scene using on-line clustering method by examine GIST features of each frame only once. Finally, we select several key frames from each scene for summarization according to visual saliency index (VSI) of each frame computed from their visual saliency map. In the paper, we proposed new criterion for estimation of temporal segmentation of streaming video. Experimental observations show the success of our approach on aerial video summarization.","PeriodicalId":277974,"journal":{"name":"2011 Sixth International Conference on Image and Graphics","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Sixth International Conference on Image and Graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIG.2011.43","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Compared with traditional video summarization approaches, aerial video summarization is a new and challenging issue for its particular characteristics. Aerial video data is a massive data stream, without pre-edit structures such as sports or news video data, lack of camera motion such as zoom and pan. On account of these characteristics, we proposed a novel approach for summarization. First, we extract GIST features for each frame as the holistic scene representation. Then, we divide aerial video into temporal segments representing a visual scene using on-line clustering method by examine GIST features of each frame only once. Finally, we select several key frames from each scene for summarization according to visual saliency index (VSI) of each frame computed from their visual saliency map. In the paper, we proposed new criterion for estimation of temporal segmentation of streaming video. Experimental observations show the success of our approach on aerial video summarization.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于视觉显著性的航拍视频在线场景分类摘要
与传统的视频摘要方法相比,航拍视频摘要以其独特的特点成为一个全新而富有挑战性的课题。航拍视频数据是一个庞大的数据流,没有像体育或新闻视频数据那样的预编辑结构,也没有像缩放和平移这样的摄像机运动。鉴于这些特点,我们提出了一种新的摘要方法。首先,我们提取每帧的GIST特征作为整体场景表示。然后,利用在线聚类方法,通过对每帧的GIST特征进行一次检测,将航拍视频划分为代表一个视觉场景的时间片段。最后,根据视觉显著性图计算出的每帧的视觉显著性指数(VSI),从每个场景中选择几个关键帧进行总结。本文提出了一种新的流媒体视频时间分割估计准则。实验结果表明,该方法在航拍视频摘要中是成功的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust Face Recognition by Sparse Local Features from a Single Image under Occlusion LIDAR-based Long Range Road Intersection Detection A Novel Algorithm for Ship Detection Based on Dynamic Fusion Model of Multi-feature and Support Vector Machine Target Tracking Based on Wavelet Features in the Dynamic Image Sequence Visual Word Pairs for Similar Image Search
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1