Phrase2VecGLM: Neural generalized language model–based semantic tagging for complex query reformulation in medical IR

Manirupa Das, E. Fosler-Lussier, Simon M. Lin, Soheil Moosavinasab, David Chen, S. Rust, Yungui Huang, R. Ramnath
{"title":"Phrase2VecGLM: Neural generalized language model–based semantic tagging for complex query reformulation in medical IR","authors":"Manirupa Das, E. Fosler-Lussier, Simon M. Lin, Soheil Moosavinasab, David Chen, S. Rust, Yungui Huang, R. Ramnath","doi":"10.18653/v1/W18-2313","DOIUrl":null,"url":null,"abstract":"In this work, we develop a novel, completely unsupervised, neural language model-based document ranking approach to semantic tagging of documents, using the document to be tagged as a query into the GLM to retrieve candidate phrases from top-ranked related documents, thus associating every document with novel related concepts extracted from the text. For this we extend the word embedding-based general language model due to Ganguly et al 2015, to employ phrasal embeddings, and use the semantic tags thus obtained for downstream query expansion, both directly and in feedback loop settings. Our method, evaluated using the TREC 2016 clinical decision support challenge dataset, shows statistically significant improvement not only over various baselines that use standard MeSH terms and UMLS concepts for query expansion, but also over baselines using human expert–assigned concept tags for the queries, run on top of a standard Okapi BM25–based document retrieval system.","PeriodicalId":200974,"journal":{"name":"Workshop on Biomedical Natural Language Processing","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Biomedical Natural Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W18-2313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this work, we develop a novel, completely unsupervised, neural language model-based document ranking approach to semantic tagging of documents, using the document to be tagged as a query into the GLM to retrieve candidate phrases from top-ranked related documents, thus associating every document with novel related concepts extracted from the text. For this we extend the word embedding-based general language model due to Ganguly et al 2015, to employ phrasal embeddings, and use the semantic tags thus obtained for downstream query expansion, both directly and in feedback loop settings. Our method, evaluated using the TREC 2016 clinical decision support challenge dataset, shows statistically significant improvement not only over various baselines that use standard MeSH terms and UMLS concepts for query expansion, but also over baselines using human expert–assigned concept tags for the queries, run on top of a standard Okapi BM25–based document retrieval system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于神经广义语言模型的医学IR复杂查询改写语义标注
在这项工作中,我们开发了一种新颖的、完全无监督的、基于神经语言模型的文档排序方法来对文档进行语义标记,使用要标记的文档作为对GLM的查询,从排名靠前的相关文档中检索候选短语,从而将每个文档与从文本中提取的新颖相关概念相关联。为此,我们扩展了Ganguly等人2015年提出的基于词嵌入的通用语言模型,采用短语嵌入,并将由此获得的语义标签直接用于下游查询扩展,也可以在反馈回路设置中使用。使用TREC 2016临床决策支持挑战数据集对我们的方法进行了评估,结果显示,不仅在使用标准MeSH术语和UMLS概念进行查询扩展的各种基线上,而且在使用人类专家分配的概念标签进行查询的基线上,在基于标准Okapi bm25的文档检索系统上运行,在统计上有显著的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
BIOptimus: Pre-training an Optimal Biomedical Language Model with Curriculum Learning for Named Entity Recognition Multi-Source (Pre-)Training for Cross-Domain Measurement, Unit and Context Extraction Building a Corpus for Biomedical Relation Extraction of Species Mentions Good Data, Large Data, or No Data? Comparing Three Approaches in Developing Research Aspect Classifiers for Biomedical Papers Evaluation of ChatGPT on Biomedical Tasks: A Zero-Shot Comparison with Fine-Tuned Generative Transformers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1