On the relevance of edge-conditioned convolution for GNN-based semantic image segmentation using spatial relationships

P. Coupeau, Jean-Baptiste Fasquel, M. Dinomais
{"title":"On the relevance of edge-conditioned convolution for GNN-based semantic image segmentation using spatial relationships","authors":"P. Coupeau, Jean-Baptiste Fasquel, M. Dinomais","doi":"10.1109/IPTA54936.2022.9784143","DOIUrl":null,"url":null,"abstract":"This paper addresses the fundamental task of semantic image segmentation by exploiting structural information (spatial relationships between image regions). To perform such task, we propose to combine a deep neural network (CNN) with inexact “many-to-one-or-none” graph matching where graphs encode efficiently class probabilities a nd structural information related to regions segmented by the CNN. In order to achieve node classification, a basic 2 -layer graph neural network (GNN) based on the edge-conditioned convolution operator (ECConv), managing both node and edge attributes, is considered. Prelim-inary experiments are performed on both a synthetic dataset and a public dataset of face images (FASSEG). Our approach is shown to be resilient to small training datasets that often limit the performance of deep learning thanks to a preprocessing task of graph coarsening. Results show that the proposal reaches a perfect accuracy on synthetic dataset and improves performance of the CNN by 6% (bounding box dice index) on FASSEG. Moreover, it enhances by 27% the initial Hausdorff distance (i.e. with CNN only) using the entire training dataset and by 41% with only 75% of training samples.","PeriodicalId":381729,"journal":{"name":"2022 Eleventh International Conference on Image Processing Theory, Tools and Applications (IPTA)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Eleventh International Conference on Image Processing Theory, Tools and Applications (IPTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA54936.2022.9784143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper addresses the fundamental task of semantic image segmentation by exploiting structural information (spatial relationships between image regions). To perform such task, we propose to combine a deep neural network (CNN) with inexact “many-to-one-or-none” graph matching where graphs encode efficiently class probabilities a nd structural information related to regions segmented by the CNN. In order to achieve node classification, a basic 2 -layer graph neural network (GNN) based on the edge-conditioned convolution operator (ECConv), managing both node and edge attributes, is considered. Prelim-inary experiments are performed on both a synthetic dataset and a public dataset of face images (FASSEG). Our approach is shown to be resilient to small training datasets that often limit the performance of deep learning thanks to a preprocessing task of graph coarsening. Results show that the proposal reaches a perfect accuracy on synthetic dataset and improves performance of the CNN by 6% (bounding box dice index) on FASSEG. Moreover, it enhances by 27% the initial Hausdorff distance (i.e. with CNN only) using the entire training dataset and by 41% with only 75% of training samples.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于空间关系的gnn语义图像分割中边缘条件卷积的相关性研究
本文通过利用结构信息(图像区域之间的空间关系)来解决语义图像分割的基本任务。为了完成这样的任务,我们提出将深度神经网络(CNN)与非精确的“多对一或无”图匹配结合起来,其中图有效地编码了与CNN分割的区域相关的分类概率和结构信息。为了实现节点分类,考虑了一种基于边缘条件卷积算子(ECConv)的基本2层图神经网络(GNN),同时管理节点和边缘属性。在人脸图像的合成数据集和公共数据集(FASSEG)上进行了初步实验。我们的方法被证明对小型训练数据集具有弹性,由于图粗化的预处理任务,这些数据集通常限制了深度学习的性能。结果表明,该方法在合成数据集上达到了很好的准确率,并将CNN在FASSEG上的性能提高了6%(边界盒骰子指数)。此外,它使用整个训练数据集将初始Hausdorff距离(即仅使用CNN)增强了27%,仅使用75%的训练样本将初始Hausdorff距离增强了41%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Special Session 3: Visual Computing in Digital Humanities Complex Texture Features Learned by Applying Randomized Neural Network on Graphs AAEGAN Optimization by Purposeful Noise Injection for the Generation of Bright-Field Brain Organoid Images Towards Fast and Accurate Intimate Contact Recognition through Video Analysis Draco-Based Selective Crypto-Compression Method of 3D objects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1