Big earth observation data analytics: matching requirements to system architectures

G. Câmara, L. F. Assis, G. R. Queiroz, K. Ferreira, E. Llapa, L. Vinhas
{"title":"Big earth observation data analytics: matching requirements to system architectures","authors":"G. Câmara, L. F. Assis, G. R. Queiroz, K. Ferreira, E. Llapa, L. Vinhas","doi":"10.1145/3006386.3006393","DOIUrl":null,"url":null,"abstract":"Earth observation satellites produce petabytes of geospatial data. To manage large data sets, researchers need stable and efficient solutions that support their analytical tasks. Since the technology for big data handling is evolving rapidly, researchers find it hard to keep up with the new developments. To lower this burden, we argue that researchers should not have to convert their algorithms to specialised environments. Imposing a new API to researchers is counterproductive and slows down progress on big data analytics. This paper assesses the cost of research-friendliness, in a case where the researcher has developed an algorithm in the R language and wants to use the same code for big data analytics. We take an algorithm for remote sensing time series analysis on compare it use on map/reduce and on array database architectures. While the performance of the algorithm for big data sets is similar, organising image data for processing in Hadoop is more complicated and time-consuming than handling images in SciDB. Therefore, the combination of the array database SciDB and the R language offers an adequate support for researchers working on big Earth observation data analytics.","PeriodicalId":416086,"journal":{"name":"International Workshop on Analytics for Big Geospatial Data","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Analytics for Big Geospatial Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3006386.3006393","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 49

Abstract

Earth observation satellites produce petabytes of geospatial data. To manage large data sets, researchers need stable and efficient solutions that support their analytical tasks. Since the technology for big data handling is evolving rapidly, researchers find it hard to keep up with the new developments. To lower this burden, we argue that researchers should not have to convert their algorithms to specialised environments. Imposing a new API to researchers is counterproductive and slows down progress on big data analytics. This paper assesses the cost of research-friendliness, in a case where the researcher has developed an algorithm in the R language and wants to use the same code for big data analytics. We take an algorithm for remote sensing time series analysis on compare it use on map/reduce and on array database architectures. While the performance of the algorithm for big data sets is similar, organising image data for processing in Hadoop is more complicated and time-consuming than handling images in SciDB. Therefore, the combination of the array database SciDB and the R language offers an adequate support for researchers working on big Earth observation data analytics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大地球观测数据分析:需求与系统架构的匹配
地球观测卫星产生pb级的地理空间数据。为了管理大型数据集,研究人员需要稳定高效的解决方案来支持他们的分析任务。由于大数据处理技术正在迅速发展,研究人员发现很难跟上新的发展。为了减轻这种负担,我们认为研究人员不应该将他们的算法转换为专门的环境。给研究人员强加新的API只会适得其反,而且会减缓大数据分析的进展。本文评估了研究友好性的成本,在一个研究人员用R语言开发了一个算法,并希望使用相同的代码进行大数据分析的情况下。本文提出了一种用于遥感时间序列分析的算法,并对其在map/reduce和阵列数据库架构上的应用进行了比较。虽然大数据集的算法性能相似,但在Hadoop中组织图像数据进行处理比在SciDB中处理图像更复杂,也更耗时。因此,阵列数据库SciDB与R语言的结合为从事地球观测大数据分析的研究人员提供了足够的支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Building knowledge graph from public data for predictive analysis: a case study on predicting technology future in space and time Big data as a service from an urban information system Spatial computing goes to education and beyond: can semantic trajectory characterize students? Agent based urban growth modeling framework on Apache Spark Towards massive spatial data validation with SpatialHadoop
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1