{"title":"Implementation of scalable elliptic curve cryptosystem crypto-accelerators for GF(2/sup m/)","authors":"A. E. Cohen, K. Parhi","doi":"10.1109/ACSSC.2004.1399177","DOIUrl":null,"url":null,"abstract":"This paper focuses on designing elliptic curve crypto-accelerators in GF(2/sup m/) that are cryptographically scalable and hold some degree of reconfigurability. Previous work in elliptic curve crypto-accelerators focused on implementations using projective coordinate systems for specific field sizes. Their performance, scalar point multiplication per second (kP/s) was determined primarily by the underlying multiplier implementation. In addition, a multiplier only implementation and a multiplier plus divider implementation are compared in terms of critical path, area and area time (AT) product. Our multiplier only design, designed for high performance, can achieve 6314 kP/s for GF(2/sup 571/) and requires 47876 LUTs. Meanwhile our multiplier and divider design, with a greater degree of reconfigurability, can achieve 44 kP/s for GF(2/sup 571/). However, this design requires 27355 LUTs, and has a significantly higher AT product. It is shown that reconfigurability with the reduction polynomial significantly benefits from the addition of a low latency divider unit and scalar point multiplication in affine coordinates. In both cases the performance is limited by a critical path in the control logic.","PeriodicalId":396779,"journal":{"name":"Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, 2004.","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.2004.1399177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
This paper focuses on designing elliptic curve crypto-accelerators in GF(2/sup m/) that are cryptographically scalable and hold some degree of reconfigurability. Previous work in elliptic curve crypto-accelerators focused on implementations using projective coordinate systems for specific field sizes. Their performance, scalar point multiplication per second (kP/s) was determined primarily by the underlying multiplier implementation. In addition, a multiplier only implementation and a multiplier plus divider implementation are compared in terms of critical path, area and area time (AT) product. Our multiplier only design, designed for high performance, can achieve 6314 kP/s for GF(2/sup 571/) and requires 47876 LUTs. Meanwhile our multiplier and divider design, with a greater degree of reconfigurability, can achieve 44 kP/s for GF(2/sup 571/). However, this design requires 27355 LUTs, and has a significantly higher AT product. It is shown that reconfigurability with the reduction polynomial significantly benefits from the addition of a low latency divider unit and scalar point multiplication in affine coordinates. In both cases the performance is limited by a critical path in the control logic.