The surgical patient mortality rate prediction by machine learning algorithms

Piyatida Watcharapasorn, Nilubon Kurubanjerdjit
{"title":"The surgical patient mortality rate prediction by machine learning algorithms","authors":"Piyatida Watcharapasorn, Nilubon Kurubanjerdjit","doi":"10.1109/JCSSE.2016.7748844","DOIUrl":null,"url":null,"abstract":"Malnutrition is a common problem in critical illness patients which is observed in patients who is undergoing for surgery and hospital mortality rate. The study found that patients undergone surgery who have malnutrition problem result in high death risk. In this research, we aim to predict the mortality rate of undergone surgery patient by using Chiang Rai Nutrition Assessment information (CNA) with various data mining models; J48, ADTree and KNN. Results from this study will help doctor to plan for patient health preparation before undergo surgery such as consumption behavior of patient. Besides, the approach developed in this study should be of value for future studies into understanding the effect of malnutrition in patient surgery result.","PeriodicalId":321571,"journal":{"name":"2016 13th International Joint Conference on Computer Science and Software Engineering (JCSSE)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 13th International Joint Conference on Computer Science and Software Engineering (JCSSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JCSSE.2016.7748844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Malnutrition is a common problem in critical illness patients which is observed in patients who is undergoing for surgery and hospital mortality rate. The study found that patients undergone surgery who have malnutrition problem result in high death risk. In this research, we aim to predict the mortality rate of undergone surgery patient by using Chiang Rai Nutrition Assessment information (CNA) with various data mining models; J48, ADTree and KNN. Results from this study will help doctor to plan for patient health preparation before undergo surgery such as consumption behavior of patient. Besides, the approach developed in this study should be of value for future studies into understanding the effect of malnutrition in patient surgery result.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机器学习算法的外科病人死亡率预测
营养不良是危重病人的一个常见问题,这在接受手术的病人和医院死亡率中都可以观察到。研究发现,有营养不良问题的手术患者死亡风险高。在本研究中,我们旨在利用清莱营养评估信息(Chiang Rai Nutrition Assessment information, CNA)与各种数据挖掘模型预测手术患者的死亡率;J48, ADTree和KNN。本研究的结果将有助于医生在手术前对患者的健康准备进行规划,例如患者的消费行为。此外,本研究建立的方法对未来研究了解营养不良对患者手术结果的影响具有一定的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Extended hierarchical extreme learning machine with multilayer perceptron Pill image binarization for detecting text imprints An approach for density monitoring of brown planthopper population in simulated paddy fields Impact of wireless communications technologies on elder people healthcare: Smart home in Australia Energy-aware scheduling of multiple workflows application on distributed systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1