Calligraphic Stylisation Learning with a Physiologically Plausible Model of Movement and Recurrent Neural Networks

Daniel Berio, Memo Akten, F. Leymarie, M. Grierson, R. Plamondon
{"title":"Calligraphic Stylisation Learning with a Physiologically Plausible Model of Movement and Recurrent Neural Networks","authors":"Daniel Berio, Memo Akten, F. Leymarie, M. Grierson, R. Plamondon","doi":"10.1145/3077981.3078049","DOIUrl":null,"url":null,"abstract":"We propose a computational framework to learn stylisation patterns from example drawings or writings, and then generate new trajectories that possess similar stylistic qualities. We particularly focus on the generation and stylisation of trajectories that are similar to the ones that can be seen in calligraphy and graffiti art. Our system is able to extract and learn dynamic and visual qualities from a small number of user defined examples which can be recorded with a digitiser device, such as a tablet, mouse or motion capture sensors. Our system is then able to transform new user drawn traces to be kinematically and stylistically similar to the training examples. We implement the system using a Recurrent Mixture Density Network (RMDN) combined with a representation given by the parameters of the Sigma Lognormal model, a physiologically plausible model of movement that has been shown to closely reproduce the velocity and trace of human handwriting gestures.","PeriodicalId":206209,"journal":{"name":"Proceedings of the 4th International Conference on Movement Computing","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 4th International Conference on Movement Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3077981.3078049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

We propose a computational framework to learn stylisation patterns from example drawings or writings, and then generate new trajectories that possess similar stylistic qualities. We particularly focus on the generation and stylisation of trajectories that are similar to the ones that can be seen in calligraphy and graffiti art. Our system is able to extract and learn dynamic and visual qualities from a small number of user defined examples which can be recorded with a digitiser device, such as a tablet, mouse or motion capture sensors. Our system is then able to transform new user drawn traces to be kinematically and stylistically similar to the training examples. We implement the system using a Recurrent Mixture Density Network (RMDN) combined with a representation given by the parameters of the Sigma Lognormal model, a physiologically plausible model of movement that has been shown to closely reproduce the velocity and trace of human handwriting gestures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用生理上似是而非的运动模型和循环神经网络学习书法风格
我们提出了一个计算框架,从示例绘画或写作中学习风格化模式,然后生成具有相似风格品质的新轨迹。我们特别关注与书法和涂鸦艺术相似的轨迹的生成和风格化。我们的系统能够从少量用户定义的例子中提取和学习动态和视觉质量,这些例子可以用数字设备(如平板电脑、鼠标或动作捕捉传感器)记录。然后,我们的系统能够将新用户绘制的轨迹转换为与训练示例在运动学和风格上相似的轨迹。我们使用循环混合密度网络(RMDN)与Sigma对数正态模型参数给出的表示相结合来实现该系统,Sigma对数正态模型是一种生理学上合理的运动模型,已被证明可以密切再现人类手写手势的速度和痕迹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Leveraging morphological computation for expressive movement generation in a soft robotic artwork Movement Matters: How a Robot Becomes Body The social-dance: decomposing naturalistic dyadic interaction dynamics to the 'micro-level' Digital Oxymorons: From Ordinary to Expressive Objects Using Tiny Wireless IMUs Rich gesture, reduced control: the influence of constrained mappings on performance technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1