ELSA: Edge Lightweight Searchable Attribute-based encryption Multi-keyword Scalability

Jawhara Aljabri, A. L. Michala, Jeremy Singer
{"title":"ELSA: Edge Lightweight Searchable Attribute-based encryption Multi-keyword Scalability","authors":"Jawhara Aljabri, A. L. Michala, Jeremy Singer","doi":"10.1109/DSC54232.2022.9888846","DOIUrl":null,"url":null,"abstract":"The digitalisation of industrial manufacturing needs the support of systems technology to enhance the efficiency of manufacturing operations, product quality, and smart decisions. This digitalisation can be achieved by the industrial internet of things (IIoT). IIoT has played a powerful role in smart manufacturing by performing real-time analysis for a large volume of data. One possible approach to perform these operations in a secure and privacy-preserving manner is to utilise cryptographic solutions. In previous work, we proposed searchable encryption with an access control algorithm for IIoT based on an edge-cloud architecture, namely ELSA. This paper extends ELSA to illustrate the correlation between the number of keywords and ELSA performance. This extension supports annotating records with multiple keywords in trapdoor and record storage and allows the record to be returnable with single-keyword queries. In addition, the experiments demonstrate the scalability and efficiency of ELSA with an increasing number of keywords and complexity.","PeriodicalId":368903,"journal":{"name":"2022 IEEE Conference on Dependable and Secure Computing (DSC)","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Conference on Dependable and Secure Computing (DSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSC54232.2022.9888846","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The digitalisation of industrial manufacturing needs the support of systems technology to enhance the efficiency of manufacturing operations, product quality, and smart decisions. This digitalisation can be achieved by the industrial internet of things (IIoT). IIoT has played a powerful role in smart manufacturing by performing real-time analysis for a large volume of data. One possible approach to perform these operations in a secure and privacy-preserving manner is to utilise cryptographic solutions. In previous work, we proposed searchable encryption with an access control algorithm for IIoT based on an edge-cloud architecture, namely ELSA. This paper extends ELSA to illustrate the correlation between the number of keywords and ELSA performance. This extension supports annotating records with multiple keywords in trapdoor and record storage and allows the record to be returnable with single-keyword queries. In addition, the experiments demonstrate the scalability and efficiency of ELSA with an increasing number of keywords and complexity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ELSA: Edge轻量级可搜索属性加密多关键字可扩展性
工业制造的数字化需要系统技术的支持,以提高制造运营效率、产品质量和智能决策。这种数字化可以通过工业物联网(IIoT)实现。工业物联网通过对大量数据进行实时分析,在智能制造中发挥了强大的作用。以安全和保护隐私的方式执行这些操作的一种可能方法是利用加密解决方案。在之前的工作中,我们提出了基于边缘云架构的IIoT访问控制算法的可搜索加密,即ELSA。本文扩展了ELSA,以说明关键字数量与ELSA性能之间的相关性。这个扩展支持在trapdoor和记录存储中标注多个关键字的记录,并允许记录与单关键字查询可返回。此外,实验表明,随着关键词数量和复杂度的增加,ELSA的可扩展性和效率也在不断提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Symbolon: Enabling Flexible Multi-device-based User Authentication A Survey on Explainable Anomaly Detection for Industrial Internet of Things Optimising user security recommendations for AI-powered smart-homes A Scary Peek into The Future: Advanced Persistent Threats in Emerging Computing Environments LAEG: Leak-based AEG using Dynamic Binary Analysis to Defeat ASLR
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1