Music Information Retrieval: An Inspirational Guide to Transfer from Related Disciplines

F. Weninger, Björn Schuller, Cynthia C. S. Liem, F. Kurth, A. Hanjalic
{"title":"Music Information Retrieval: An Inspirational Guide to Transfer from Related Disciplines","authors":"F. Weninger, Björn Schuller, Cynthia C. S. Liem, F. Kurth, A. Hanjalic","doi":"10.4230/DFU.Vol3.11041.195","DOIUrl":null,"url":null,"abstract":"The emerging field of Music Information Retrieval (MIR) has been influenced by neighboring domains in signal processing and machine learning, including automatic speech recognition, image processing and text information retrieval. In this contribution, we start with concrete examples for methodology transfer between speech and music processing, oriented on the building blocks of pattern recognition: preprocessing, feature extraction, and classification/decoding. We then assume a higher level viewpoint when describing sources of mutual inspiration derived from text and image information retrieval. We conclude that dealing with the peculiarities of music in MIR research has contributed to advancing the state-of-the-art in other fields, and that many future challenges in MIR are strikingly similar to those that other research areas have been facing.","PeriodicalId":400865,"journal":{"name":"Multimodal Music Processing","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multimodal Music Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/DFU.Vol3.11041.195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

The emerging field of Music Information Retrieval (MIR) has been influenced by neighboring domains in signal processing and machine learning, including automatic speech recognition, image processing and text information retrieval. In this contribution, we start with concrete examples for methodology transfer between speech and music processing, oriented on the building blocks of pattern recognition: preprocessing, feature extraction, and classification/decoding. We then assume a higher level viewpoint when describing sources of mutual inspiration derived from text and image information retrieval. We conclude that dealing with the peculiarities of music in MIR research has contributed to advancing the state-of-the-art in other fields, and that many future challenges in MIR are strikingly similar to those that other research areas have been facing.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
音乐信息检索:从相关学科转移的励志指南
音乐信息检索(MIR)这一新兴领域受到信号处理和机器学习领域的影响,包括自动语音识别、图像处理和文本信息检索。在本文中,我们从语音和音乐处理之间的方法转换的具体例子开始,以模式识别的构建块为导向:预处理、特征提取和分类/解码。然后,我们假设一个更高层次的观点来描述从文本和图像信息检索中获得的相互灵感来源。我们的结论是,在MIR研究中处理音乐的特殊性有助于推进其他领域的最新技术,并且MIR未来的许多挑战与其他研究领域所面临的挑战惊人地相似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Score-Informed Source Separation for Music Signals Linking Sheet Music and Audio - Challenges and New Approaches A Cross-Version Approach for Harmonic Analysis of Music Recordings Data-Driven Sound Track Generation Audio Content-Based Music Retrieval
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1