Similarity Measures for Chinese Short Text Based on Representation Learning

Yan Li, Xu-Cheng Yin, Yinghua Zhang, Hongwei Hao
{"title":"Similarity Measures for Chinese Short Text Based on Representation Learning","authors":"Yan Li, Xu-Cheng Yin, Yinghua Zhang, Hongwei Hao","doi":"10.12733/JICS20105746","DOIUrl":null,"url":null,"abstract":"Similarity measure in Chinese short text is an important prerequisite for many content-based texts or documents retrieval tasks. In this paper, we propose a fast method for representing Chinese short texts to calculate the similarity between texts. The method is based on the representation of Chinese words. First, Chinese word representation is learned by a deep neural network with local context embedding and global context. Then, the words in short text are replaced by the learned representations of Chinese words and the short text is represented by dynamic average-weighted function depending on target text. Next, the cosine similarity method is used for the similarity measurement between texts. Last, experiment shows the semantic by visualizing the result of Chinese word representation learning and the experiment on similarity measure demonstrates the effectiveness of our short text representation method.","PeriodicalId":213716,"journal":{"name":"The Journal of Information and Computational Science","volume":"146 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Information and Computational Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12733/JICS20105746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Similarity measure in Chinese short text is an important prerequisite for many content-based texts or documents retrieval tasks. In this paper, we propose a fast method for representing Chinese short texts to calculate the similarity between texts. The method is based on the representation of Chinese words. First, Chinese word representation is learned by a deep neural network with local context embedding and global context. Then, the words in short text are replaced by the learned representations of Chinese words and the short text is represented by dynamic average-weighted function depending on target text. Next, the cosine similarity method is used for the similarity measurement between texts. Last, experiment shows the semantic by visualizing the result of Chinese word representation learning and the experiment on similarity measure demonstrates the effectiveness of our short text representation method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于表示学习的中文短文本相似度度量
中文短文本的相似度度量是许多基于内容的文本或文档检索任务的重要前提。本文提出了一种快速表示中文短文本的方法来计算文本间的相似度。该方法基于中文单词的表示。首先,采用局部上下文嵌入和全局上下文相结合的深度神经网络学习中文单词表示。然后,将短文本中的单词替换为学习到的中文单词表示,并根据目标文本使用动态平均加权函数表示短文本。其次,使用余弦相似度法进行文本之间的相似度度量。最后,通过对中文单词表示学习结果的可视化实验证明了该方法的语义性,相似度度量实验验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Geometrical gait based model for fall detection using thresholding Research of Spatial Data Query Optimization Methods Based on K-Nearest Neighbor Algorithm An Algebraic-trigonometric Blended Piecewise Curve Micro-expression Cognition and Emotion Modeling Based on Gross Reappraisal Strategy A Novel Cognitive Radio Decision Engine Based on Chaotic Quantum Bee Colony Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1