Predicting Litecoin price movement in a pre-defined trading volume window using Random Forest model

Guilherme Palazzo, E. Sbruzzi, C. Nascimento, M. Leles
{"title":"Predicting Litecoin price movement in a pre-defined trading volume window using Random Forest model","authors":"Guilherme Palazzo, E. Sbruzzi, C. Nascimento, M. Leles","doi":"10.1109/SysCon53073.2023.10131080","DOIUrl":null,"url":null,"abstract":"Over the past years, there has been a growing interest in cryptocurrency markets. In this context, price forecasting initiatives that aid in the decision-making process of investors and market participants have emerged and drawn the interest of academia and the financial technology industry. In this paper, we present a machine learning classification model that forecasts the price direction - top, modeled as 1, or neutral or bottom, modeled as 0 - of Litecoin (LTC) over the forecast horizon equivalent to volume-wise samples of 100 thousand LTC. For modeling, we adopt a random forest classifier, achieving an Area Under the Receiver Operating Characteristic curve (AUROC or AUC) score of 0.65 on the hold-out, out-of-time test subset.","PeriodicalId":169296,"journal":{"name":"2023 IEEE International Systems Conference (SysCon)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Systems Conference (SysCon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SysCon53073.2023.10131080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Over the past years, there has been a growing interest in cryptocurrency markets. In this context, price forecasting initiatives that aid in the decision-making process of investors and market participants have emerged and drawn the interest of academia and the financial technology industry. In this paper, we present a machine learning classification model that forecasts the price direction - top, modeled as 1, or neutral or bottom, modeled as 0 - of Litecoin (LTC) over the forecast horizon equivalent to volume-wise samples of 100 thousand LTC. For modeling, we adopt a random forest classifier, achieving an Area Under the Receiver Operating Characteristic curve (AUROC or AUC) score of 0.65 on the hold-out, out-of-time test subset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用随机森林模型在预定义的交易量窗口中预测莱特币价格走势
在过去的几年里,人们对加密货币市场的兴趣越来越大。在这种背景下,有助于投资者和市场参与者决策过程的价格预测举措已经出现,并引起了学术界和金融科技行业的兴趣。在本文中,我们提出了一个机器学习分类模型,该模型预测莱特币(LTC)的价格方向-顶部,建模为1,或中性或底部,建模为0 -在预测范围内相当于10万LTC的批量样本。对于建模,我们采用随机森林分类器,在延迟、超时测试子集上实现了接收者工作特征曲线下面积(AUROC或AUC)得分为0.65。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling UAS Flight Procedures for SORA Safety Objectives A Deep Reinforcement Learning Solution for the Low Level Motion Control of a Robot Manipulator System Functional Architecture for Holistic Grid and Market Oriented Power Management Applying a MBSE Methodology in Small Scale Technology Development 1 Ensemble Method For Fault Detection & Classification in Transmission Lines Using ML
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1