Parallel texture caching

Homan Igehy, Matthew Eldridge, P. Hanrahan
{"title":"Parallel texture caching","authors":"Homan Igehy, Matthew Eldridge, P. Hanrahan","doi":"10.1145/311534.311583","DOIUrl":null,"url":null,"abstract":"The creation of high-quality images requires new functionality and higher performance in real-time graphics architectures. In terms of functionality, texture mapping has become an integral component of graphics systems, and in terms of performance, parallel techniques are used at all stages of the graphics pipeline. In rasterization, texture caching has become prevalent for reducing texture bandwidth requirements. However, parallel rasterization architectures divide work across multiple functional units, thus potentially decreasing the locality of texture references. For such architectures to scale well, it is necessary to develop efficient parallel texture caching subsystems. We quantify the effects of parallel rasterization on texture locality for a number of rasterization architectures, representing both current commercial products and proposed future architectures. A cycle-accurate simulation of the rasterization system demonstrates the parallel speedup obtained by these systems and quantities inefficiencies due to redundant work, inherent parallel load imbalance, insufftcient memory bandwidth, and resource contention. We find that parallel texture caching works well, and is general enough to work with a wide variety of rasterization architectures.","PeriodicalId":298241,"journal":{"name":"Proceedings of the ACM SIGGRAPH/EUROGRAPHICS workshop on Graphics hardware","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM SIGGRAPH/EUROGRAPHICS workshop on Graphics hardware","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/311534.311583","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

Abstract

The creation of high-quality images requires new functionality and higher performance in real-time graphics architectures. In terms of functionality, texture mapping has become an integral component of graphics systems, and in terms of performance, parallel techniques are used at all stages of the graphics pipeline. In rasterization, texture caching has become prevalent for reducing texture bandwidth requirements. However, parallel rasterization architectures divide work across multiple functional units, thus potentially decreasing the locality of texture references. For such architectures to scale well, it is necessary to develop efficient parallel texture caching subsystems. We quantify the effects of parallel rasterization on texture locality for a number of rasterization architectures, representing both current commercial products and proposed future architectures. A cycle-accurate simulation of the rasterization system demonstrates the parallel speedup obtained by these systems and quantities inefficiencies due to redundant work, inherent parallel load imbalance, insufftcient memory bandwidth, and resource contention. We find that parallel texture caching works well, and is general enough to work with a wide variety of rasterization architectures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
并行纹理缓存
高质量图像的创建需要实时图形架构中的新功能和更高的性能。就功能而言,纹理映射已经成为图形系统不可或缺的组成部分,而就性能而言,并行技术被用于图形管道的所有阶段。在光栅化中,纹理缓存已经成为减少纹理带宽需求的普遍方法。然而,并行光栅化架构在多个功能单元之间划分工作,从而潜在地降低了纹理引用的局部性。为了使这种架构具有良好的可扩展性,有必要开发高效的并行纹理缓存子系统。我们量化了并行栅格化对许多栅格化架构的纹理局部性的影响,代表了当前的商业产品和提出的未来架构。对光栅化系统的周期精确模拟表明,这些系统获得了并行加速,并指出了由于冗余工作、固有的并行负载不平衡、内存带宽不足和资源争用而导致的效率低下。我们发现并行纹理缓存工作得很好,并且足以与各种栅格化架构一起工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tiled polygon traversal using half-plane edge functions Hybrid sort-first and sort-last parallel rendering with a cluster of PCs Towards interactive bump mapping with anisotropic shift-variant BRDFs The RACE II engine for real-time volume rendering Single-pass full-screen hardware accelerated antialiasing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1