Avoid Filling Swiss Cheese with Whipped Cream: Imputation Techniques and Evaluation Procedures for Cross-Country Time Series

M. Denk, Michael Weber
{"title":"Avoid Filling Swiss Cheese with Whipped Cream: Imputation Techniques and Evaluation Procedures for Cross-Country Time Series","authors":"M. Denk, Michael Weber","doi":"10.5089/9781455270507.001","DOIUrl":null,"url":null,"abstract":"International organizations collect data from national authorities to create multivariate cross-sectional time series for their analyses. As data from countries with not yet well-established statistical systems may be incomplete, the bridging of data gaps is a crucial challenge. This paper investigates data structures and missing data patterns in the cross-sectional time series framework, reviews missing value imputation techniques used for micro data in official statistics, and discusses their applicability to cross-sectional time series. It presents statistical methods and quality indicators that enable the (comparative) evaluation of imputation processes and completed datasets.","PeriodicalId":384078,"journal":{"name":"ERN: Other Econometrics: Data Collection & Data Estimation Methodology (Topic)","volume":"128 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometrics: Data Collection & Data Estimation Methodology (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5089/9781455270507.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

International organizations collect data from national authorities to create multivariate cross-sectional time series for their analyses. As data from countries with not yet well-established statistical systems may be incomplete, the bridging of data gaps is a crucial challenge. This paper investigates data structures and missing data patterns in the cross-sectional time series framework, reviews missing value imputation techniques used for micro data in official statistics, and discusses their applicability to cross-sectional time series. It presents statistical methods and quality indicators that enable the (comparative) evaluation of imputation processes and completed datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
避免用鲜奶油填充瑞士奶酪:跨国时间序列的归算技术和评估程序
国际组织从国家当局收集数据,为其分析创建多变量横断面时间序列。由于来自统计系统尚未完善的国家的数据可能不完整,因此弥合数据差距是一项重大挑战。本文研究了横截面时间序列框架下的数据结构和缺失数据模式,综述了官方统计中用于微观数据的缺失值估算技术,并讨论了它们在横截面时间序列中的适用性。它提出了统计方法和质量指标,使(比较)评价的imputation过程和完成的数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Structural Estimation Combining Micro and Macro Data Monetary Policy under Data Uncertainty: Interest-Rate Smoothing from a Cross-Country Perspective Nudging Towards Data Equity: The Role of Stewardship and Fiduciaries in the Digital Economy Re-Engineering Key National Economic Indicators Quant Research Ideas to Test for ETF Option and Equity Markets in China and Japan
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1