{"title":"Avoid Filling Swiss Cheese with Whipped Cream: Imputation Techniques and Evaluation Procedures for Cross-Country Time Series","authors":"M. Denk, Michael Weber","doi":"10.5089/9781455270507.001","DOIUrl":null,"url":null,"abstract":"International organizations collect data from national authorities to create multivariate cross-sectional time series for their analyses. As data from countries with not yet well-established statistical systems may be incomplete, the bridging of data gaps is a crucial challenge. This paper investigates data structures and missing data patterns in the cross-sectional time series framework, reviews missing value imputation techniques used for micro data in official statistics, and discusses their applicability to cross-sectional time series. It presents statistical methods and quality indicators that enable the (comparative) evaluation of imputation processes and completed datasets.","PeriodicalId":384078,"journal":{"name":"ERN: Other Econometrics: Data Collection & Data Estimation Methodology (Topic)","volume":"128 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometrics: Data Collection & Data Estimation Methodology (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5089/9781455270507.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
International organizations collect data from national authorities to create multivariate cross-sectional time series for their analyses. As data from countries with not yet well-established statistical systems may be incomplete, the bridging of data gaps is a crucial challenge. This paper investigates data structures and missing data patterns in the cross-sectional time series framework, reviews missing value imputation techniques used for micro data in official statistics, and discusses their applicability to cross-sectional time series. It presents statistical methods and quality indicators that enable the (comparative) evaluation of imputation processes and completed datasets.