Soufiane El Mrabti, M. Lazaar, Mohammed Al Achhab, Hicham Omara
{"title":"Novel Convex Polyhedron Classifier for Sentiment Analysis","authors":"Soufiane El Mrabti, M. Lazaar, Mohammed Al Achhab, Hicham Omara","doi":"10.1109/CloudTech49835.2020.9365906","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a Novel Convex Polyhedron classifier (NCPC) based on the geometric concept convex hull. NCPC is basically a linear piecewise classifier (LPC). It partitions linearly non-separable data into various linearly separable subsets. For each of these subset of data, a linear hyperplane is used to classify them. We evaluate the performance of this classifier by combining it with two feature selection methods (Chi- squared and Anova F-value). Using two datasets, the results indicate that our proposed classifier outperforms other LPC- based classifiers.","PeriodicalId":272860,"journal":{"name":"2020 5th International Conference on Cloud Computing and Artificial Intelligence: Technologies and Applications (CloudTech)","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 5th International Conference on Cloud Computing and Artificial Intelligence: Technologies and Applications (CloudTech)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CloudTech49835.2020.9365906","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper, we propose a Novel Convex Polyhedron classifier (NCPC) based on the geometric concept convex hull. NCPC is basically a linear piecewise classifier (LPC). It partitions linearly non-separable data into various linearly separable subsets. For each of these subset of data, a linear hyperplane is used to classify them. We evaluate the performance of this classifier by combining it with two feature selection methods (Chi- squared and Anova F-value). Using two datasets, the results indicate that our proposed classifier outperforms other LPC- based classifiers.