Accelerating satellite image based large-scale settlement detection with GPU

D. Patlolla, E. Bright, Jeanette E. Weaver, A. Cheriyadat
{"title":"Accelerating satellite image based large-scale settlement detection with GPU","authors":"D. Patlolla, E. Bright, Jeanette E. Weaver, A. Cheriyadat","doi":"10.1145/2447481.2447487","DOIUrl":null,"url":null,"abstract":"Computer vision algorithms for image analysis are often computationally demanding. Application of such algorithms on large image databases--- such as the high-resolution satellite imagery covering the entire land surface, can easily saturate the computational capabilities of conventional CPUs. There is a great demand for vision algorithms running on high performance computing (HPC) architecture capable of processing petascale image data. We exploit the parallel processing capability of GPUs to present a GPU-friendly algorithm for robust and efficient detection of settlements from large-scale high-resolution satellite imagery. Feature descriptor generation is an expensive, but a key step in automated scene analysis. To address this challenge, we present GPU implementations for three different feature descriptors-multiscale Historgram of Oriented Gradients (HOG), Gray Level Co-Occurrence Matrix (GLCM) Contrast and local pixel intensity statistics. We perform extensive experimental evaluations of our implementation using diverse and large image datasets. Our GPU implementation of the feature descriptor algorithms results in speedups of 220 times compared to the CPU version. We present an highly efficient settlement detection system running on a multiGPU architecture capable of extracting human settlement regions from a city-scale sub-meter spatial resolution aerial imagery spanning roughly 1200 sq. kilometers in just 56 seconds with detection accuracy close to 90%. This remarkable speedup gained by our vision algorithm maintaining high detection accuracy clearly demonstrates that such computational advancements clearly hold the solution for petascale image analysis challenges.","PeriodicalId":416086,"journal":{"name":"International Workshop on Analytics for Big Geospatial Data","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Analytics for Big Geospatial Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2447481.2447487","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Computer vision algorithms for image analysis are often computationally demanding. Application of such algorithms on large image databases--- such as the high-resolution satellite imagery covering the entire land surface, can easily saturate the computational capabilities of conventional CPUs. There is a great demand for vision algorithms running on high performance computing (HPC) architecture capable of processing petascale image data. We exploit the parallel processing capability of GPUs to present a GPU-friendly algorithm for robust and efficient detection of settlements from large-scale high-resolution satellite imagery. Feature descriptor generation is an expensive, but a key step in automated scene analysis. To address this challenge, we present GPU implementations for three different feature descriptors-multiscale Historgram of Oriented Gradients (HOG), Gray Level Co-Occurrence Matrix (GLCM) Contrast and local pixel intensity statistics. We perform extensive experimental evaluations of our implementation using diverse and large image datasets. Our GPU implementation of the feature descriptor algorithms results in speedups of 220 times compared to the CPU version. We present an highly efficient settlement detection system running on a multiGPU architecture capable of extracting human settlement regions from a city-scale sub-meter spatial resolution aerial imagery spanning roughly 1200 sq. kilometers in just 56 seconds with detection accuracy close to 90%. This remarkable speedup gained by our vision algorithm maintaining high detection accuracy clearly demonstrates that such computational advancements clearly hold the solution for petascale image analysis challenges.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用GPU加速基于卫星图像的大规模沉降检测
用于图像分析的计算机视觉算法通常对计算量要求很高。这种算法在大型图像数据库(如覆盖整个陆地表面的高分辨率卫星图像)上的应用很容易使传统cpu的计算能力饱和。对于能够处理千万亿级图像数据的高性能计算(HPC)架构的视觉算法有很大的需求。我们利用gpu的并行处理能力,提出了一种gpu友好的算法,用于从大规模高分辨率卫星图像中鲁棒高效地检测定居点。特征描述符的生成是自动化场景分析中代价高昂的关键步骤。为了解决这一挑战,我们提出了三种不同特征描述符的GPU实现-多尺度定向梯度直方图(HOG),灰度共生矩阵(GLCM)对比度和局部像素强度统计。我们使用不同的大型图像数据集对我们的实现进行了广泛的实验评估。与CPU版本相比,我们的GPU实现特征描述符算法的速度提高了220倍。我们提出了一种高效的聚落检测系统,该系统运行在多gpu架构上,能够从大约1200平方米的城市尺度亚米空间分辨率航空图像中提取人类聚落区域。在56秒内探测千米,探测精度接近90%。我们的视觉算法保持了很高的检测精度,这一显著的加速清楚地表明,这种计算上的进步清楚地为千万亿次图像分析挑战提供了解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Building knowledge graph from public data for predictive analysis: a case study on predicting technology future in space and time Big data as a service from an urban information system Spatial computing goes to education and beyond: can semantic trajectory characterize students? Agent based urban growth modeling framework on Apache Spark Towards massive spatial data validation with SpatialHadoop
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1