Feature extraction using HHT-based locally optimized short-time fractional Fourier transform for speaker recognition

Jinfang Wang, Hailong Du, Ming Guo, Xinli Nie, Shu-xin Luan, Chang Liu
{"title":"Feature extraction using HHT-based locally optimized short-time fractional Fourier transform for speaker recognition","authors":"Jinfang Wang, Hailong Du, Ming Guo, Xinli Nie, Shu-xin Luan, Chang Liu","doi":"10.1109/ICIVPR.2017.7890873","DOIUrl":null,"url":null,"abstract":"This paper presents an improved locally optimized short-time fractional Fourier transform (STFRFT), HHT-based locally optimized STFRFT, by finding the optimal order using phase information ignoring the premise of the known chirp rate of signal and pre-estimated pitch of speech. The feature derived from the optimal order FRFT's magnitude spectrum, HHT-based locally optimized STFRFT Mel-frequency cepstral coefficients (HLO-STFRFT-MFCC), reveals the definite advantage in speaker recognition experiments on the TIMIT database. Furthermore, HLO-STFRFT-MFCC yields a gain of 13.0% relative to the baseline feature of Mel-frequency cepstral coefficients (MFCC) in the recognition accuracy on 2004 NIST SRE corpora.","PeriodicalId":126745,"journal":{"name":"2017 IEEE International Conference on Imaging, Vision & Pattern Recognition (icIVPR)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Imaging, Vision & Pattern Recognition (icIVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIVPR.2017.7890873","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper presents an improved locally optimized short-time fractional Fourier transform (STFRFT), HHT-based locally optimized STFRFT, by finding the optimal order using phase information ignoring the premise of the known chirp rate of signal and pre-estimated pitch of speech. The feature derived from the optimal order FRFT's magnitude spectrum, HHT-based locally optimized STFRFT Mel-frequency cepstral coefficients (HLO-STFRFT-MFCC), reveals the definite advantage in speaker recognition experiments on the TIMIT database. Furthermore, HLO-STFRFT-MFCC yields a gain of 13.0% relative to the baseline feature of Mel-frequency cepstral coefficients (MFCC) in the recognition accuracy on 2004 NIST SRE corpora.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于局部优化的短时分数傅里叶变换特征提取用于说话人识别
本文提出了一种改进的局部优化短时分数傅里叶变换(STFRFT),即基于hht的局部优化STFRFT,在忽略已知信号啁啾率和预估语音音高的前提下,利用相位信息寻找最优阶数。基于hht的局部优化STFRFT Mel-frequency倒谱系数(HLO-STFRFT-MFCC)特征在基于TIMIT数据库的说话人识别实验中显示出明显的优势。此外,HLO-STFRFT-MFCC在2004年NIST SRE语料库上的识别精度相对于mel频率倒谱系数(MFCC)的基线特征增加了13.0%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Smart material interfaces: Playful and artistic applications Detection of Interstitial Lung Disease using correlation and regression methods on texture measure Single cell mass measurement from deformation of nanofork Handwritten Arabic numeral recognition using deep learning neural networks Chord Angle Deviation using Tangent (CADT), an efficient and robust contour-based corner detector
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1