Pipe defect assessment made by strainbased

G. Pluvinage
{"title":"Pipe defect assessment made by strainbased","authors":"G. Pluvinage","doi":"10.28999/2514-541X-2018-2-4-265-285","DOIUrl":null,"url":null,"abstract":"STRAIN-BASED DESIGN (SBD) is preferred for situations where the loading of a pipeline is due to forces other than the internal pressure and produce large stress and strain in the pipe wall.STRAIN-BASED DESIGN (SBD) is preferred for situations where the loading of a pipeline is due to forces other than the internal pressure and produce large stress and strain in the pipe wall.Under constraint conditions due to the presence of defect, tensile strains are increased due to stress concentration and the critical strain is reduced due to stress triaxiality. Such cases can be considered in design using Defect Assessment Procedures (DAP). This paper presents an extensive review of SBD methods used for pipe defect assessment as: 1. critical global strain as a criterion for pipe defect assessment; 2. critical local strain as a criterion for pipe defect assessment; 3. strain intensity factor as a criterion for pipe defect assessment; 4. notch ductility factor (NDF); 5. strain-based design based on J integral; 6. strain-based design based on CTOD. This presentation follows a rapid description of the mechanism of ductile failure, the influence of triaxiality, and loading mode through Lode angle.","PeriodicalId":262860,"journal":{"name":"Pipeline Science and Technology","volume":"1996 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pipeline Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28999/2514-541X-2018-2-4-265-285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

STRAIN-BASED DESIGN (SBD) is preferred for situations where the loading of a pipeline is due to forces other than the internal pressure and produce large stress and strain in the pipe wall.STRAIN-BASED DESIGN (SBD) is preferred for situations where the loading of a pipeline is due to forces other than the internal pressure and produce large stress and strain in the pipe wall.Under constraint conditions due to the presence of defect, tensile strains are increased due to stress concentration and the critical strain is reduced due to stress triaxiality. Such cases can be considered in design using Defect Assessment Procedures (DAP). This paper presents an extensive review of SBD methods used for pipe defect assessment as: 1. critical global strain as a criterion for pipe defect assessment; 2. critical local strain as a criterion for pipe defect assessment; 3. strain intensity factor as a criterion for pipe defect assessment; 4. notch ductility factor (NDF); 5. strain-based design based on J integral; 6. strain-based design based on CTOD. This presentation follows a rapid description of the mechanism of ductile failure, the influence of triaxiality, and loading mode through Lode angle.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
采用应变法对管道缺陷进行评估
基于应变的设计(SBD)是首选的情况下,管道的加载是由于力以外的内部压力,并在管壁产生较大的应力和应变。基于应变的设计(SBD)是首选的情况下,管道的加载是由于力以外的内部压力,并在管壁产生较大的应力和应变。在存在缺陷的约束条件下,由于应力集中,拉伸应变增大,由于应力三轴性,临界应变减小。这种情况可以在设计中使用缺陷评估程序(DAP)来考虑。本文介绍了用于管道缺陷评估的SBD方法的广泛回顾:1。临界总应变作为管道缺陷评估的准则2. 临界局部应变在管道缺陷评定中的应用3.应变强度因子在管道缺陷评价中的应用4. 缺口延展性系数;5. 基于J积分的应变设计;6. 基于CTOD的应变设计。本文简要介绍了延性破坏的机理、三轴性的影响以及通过Lode角的加载模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improved methods for sizing metal loss in dents for ECA Method for determining technological parameters to repair pipeline with out-of-spec curvature Derivation of phenomenological turbulence theory in liquid with small additives of drag reducing agents Numerical method for identifying the flow model in the line pipe Optimization modeling of degradation processes in crude oil spilled on the sea surface considering the wind conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1