Query estimation by adaptive sampling

Yi-Leh Wu, D. Agrawal, A. E. Abbadi
{"title":"Query estimation by adaptive sampling","authors":"Yi-Leh Wu, D. Agrawal, A. E. Abbadi","doi":"10.1109/ICDE.2002.994781","DOIUrl":null,"url":null,"abstract":"The ability to provide accurate and efficient result estimations of user queries is very important for the query optimizer in database systems. In this paper, we show that the traditional estimation techniques with data reduction points of view do not produce satisfiable estimation results if the query patterns are dynamically changing. We further show that to reduce query estimation error, instead of accurately capturing the data distribution, it is more effective to capture the user query patterns. In this paper, we propose query estimation techniques that can adapt to user query patterns for more accurate estimates of the size of selection or range queries over databases.","PeriodicalId":191529,"journal":{"name":"Proceedings 18th International Conference on Data Engineering","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 18th International Conference on Data Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2002.994781","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

The ability to provide accurate and efficient result estimations of user queries is very important for the query optimizer in database systems. In this paper, we show that the traditional estimation techniques with data reduction points of view do not produce satisfiable estimation results if the query patterns are dynamically changing. We further show that to reduce query estimation error, instead of accurately capturing the data distribution, it is more effective to capture the user query patterns. In this paper, we propose query estimation techniques that can adapt to user query patterns for more accurate estimates of the size of selection or range queries over databases.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于自适应采样的查询估计
对于数据库系统中的查询优化器来说,提供准确而高效的用户查询结果估计的能力非常重要。在本文中,我们证明了传统的基于数据约简观点的估计技术在查询模式是动态变化的情况下不能产生令人满意的估计结果。我们进一步证明,为了减少查询估计误差,捕获用户查询模式比准确捕获数据分布更有效。在本文中,我们提出了可以适应用户查询模式的查询估计技术,以便更准确地估计数据库上的选择或范围查询的大小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Out from under the trees [linear file template] Declarative composition and peer-to-peer provisioning of dynamic Web services Multivariate time series prediction via temporal classification Integrating workflow management systems with business-to-business interaction standards YFilter: efficient and scalable filtering of XML documents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1