Improving User's Quality of Experience in Imbalanced Dataset

Tanghui Wang, Ruochen Huang, Xin Wei, Fang Zhou
{"title":"Improving User's Quality of Experience in Imbalanced Dataset","authors":"Tanghui Wang, Ruochen Huang, Xin Wei, Fang Zhou","doi":"10.1109/ICS.2016.0142","DOIUrl":null,"url":null,"abstract":"Currently, traditional algorithm performs not well in terms of predicting the user's complaint in imbalanced IPTV dataset. To solve this problem, we combine status data from the set-top box with data of user's complaints and select the appropriate model to predict user's quality of experience (QoE). Concretely, we firstly perform data cleaning and select suitable attributes from the original dataset. Then, we apply random under-sampling and synthetic over-sampling to the preprocessed dataset. In order to get better performance, we improves the Synthetic Minority Over-sampling Technique (SMOTE) algorithm and combine it with K-means algorithm to generate a new dataset. After these procedures, we use the Naïve Bayes (NB) model in user's complaint dataset. Through the rigorous modeling and prediction, extensive experimental results show that this integrated algorithm performs better than the Borderline-SMOTE algorithm in predicting user's complaints.","PeriodicalId":281088,"journal":{"name":"2016 International Computer Symposium (ICS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Computer Symposium (ICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICS.2016.0142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Currently, traditional algorithm performs not well in terms of predicting the user's complaint in imbalanced IPTV dataset. To solve this problem, we combine status data from the set-top box with data of user's complaints and select the appropriate model to predict user's quality of experience (QoE). Concretely, we firstly perform data cleaning and select suitable attributes from the original dataset. Then, we apply random under-sampling and synthetic over-sampling to the preprocessed dataset. In order to get better performance, we improves the Synthetic Minority Over-sampling Technique (SMOTE) algorithm and combine it with K-means algorithm to generate a new dataset. After these procedures, we use the Naïve Bayes (NB) model in user's complaint dataset. Through the rigorous modeling and prediction, extensive experimental results show that this integrated algorithm performs better than the Borderline-SMOTE algorithm in predicting user's complaints.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在不平衡数据集中提高用户体验质量
目前,传统算法在IPTV数据集不均衡情况下的用户投诉预测效果不佳。为了解决这一问题,我们将机顶盒的状态数据与用户投诉数据结合起来,选择合适的模型来预测用户体验质量(QoE)。具体来说,我们首先进行数据清洗,从原始数据集中选择合适的属性。然后,我们对预处理数据集进行随机欠采样和合成过采样。为了获得更好的性能,我们改进了合成少数派过采样技术(SMOTE)算法,并将其与K-means算法结合生成新的数据集。在这些步骤之后,我们在用户投诉数据集中使用Naïve贝叶斯(NB)模型。通过严格的建模和预测,大量的实验结果表明,该集成算法在预测用户投诉方面优于Borderline-SMOTE算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Resource Allocation Algorithms for LTE over Wi-Fi Spectrum A Dynamically Adjusted Vehicles Navigation Scheme with Real-Time Traffic Information to Relieve Regional Traffic Congestion in Vehicular Ad-Hoc Networks Forward/Backward Unforgeable Digital Signature Scheme Using Symmetric-Key Crypto-System Mobile Edge Fog Computing in 5G Era: Architecture and Implementation Investigating the Determinants of Mobile Learning Acceptance in Higher Education Based on UTAUT
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1