{"title":"Relation Heterogeneous Graph Neural Network","authors":"Yu Jielin, Wei Zukuan","doi":"10.1109/ICCWAMTIP56608.2022.10016506","DOIUrl":null,"url":null,"abstract":"In heterogeneous graph, we can mine high-order neighbor information or semantic information using meta-path, or only use the original connection, and then obtain high-order neighbor information indirectly through residual connections. Both two methods can get good results, but the latter can improve the efficiency without prior knowledge and meta-path mining. We take the second approach, proposing a novel relation heterogeneous graph neural network (RHGN) which adds edge features to the message aggregation of nodes and updates edge information by comparing different edge types through auxiliary tasks. Extensive experiments on two real-world heterogeneous graphs of node classification tasks show that our proposed model works better.","PeriodicalId":159508,"journal":{"name":"2022 19th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 19th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCWAMTIP56608.2022.10016506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In heterogeneous graph, we can mine high-order neighbor information or semantic information using meta-path, or only use the original connection, and then obtain high-order neighbor information indirectly through residual connections. Both two methods can get good results, but the latter can improve the efficiency without prior knowledge and meta-path mining. We take the second approach, proposing a novel relation heterogeneous graph neural network (RHGN) which adds edge features to the message aggregation of nodes and updates edge information by comparing different edge types through auxiliary tasks. Extensive experiments on two real-world heterogeneous graphs of node classification tasks show that our proposed model works better.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
关系异构图神经网络
在异构图中,我们可以使用元路径挖掘高阶邻居信息或语义信息,或者只使用原始连接,然后通过剩余连接间接获取高阶邻居信息。两种方法都可以获得较好的结果,但后者可以在不需要先验知识和元路径挖掘的情况下提高效率。采用第二种方法,提出了一种新型的关系异构图神经网络(RHGN),该网络在节点的消息聚合中加入边缘特征,并通过辅助任务比较不同的边缘类型来更新边缘信息。在两个真实的节点分类任务异构图上进行的大量实验表明,我们提出的模型效果更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Subcortico-Cortical Interactions Of Edge Functional Connectivity In Parkinson’s Disease Feature Modeling and Dimensionality Reduction to Improve ML-Based DDOS Detection Systems in SDN Environment Research on the "Deep Integration" of Information Technology and Precise Civic Education in Universities Knowledge Extraction and Discrimination Based Calibration on Medical Imaging Classification AW-PCNN: Adaptive Weighting Pyramidal Convolutional Neural Network for Fine-Grained Few-Shot Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1