Students' emotional self-labels for personalized models

Sinem Aslan, Eda Okur, Nese Alyüz, Sinem Emine Mete, Ece Oktay, Ergin Utku Genc, Asli Arslan Esme
{"title":"Students' emotional self-labels for personalized models","authors":"Sinem Aslan, Eda Okur, Nese Alyüz, Sinem Emine Mete, Ece Oktay, Ergin Utku Genc, Asli Arslan Esme","doi":"10.1145/3027385.3029452","DOIUrl":null,"url":null,"abstract":"There are some implementations towards understanding students' emotional states through automated systems with machine learning models. However, generic AI models of emotions lack enough accuracy to autonomously and meaningfully trigger any interventions. Collecting self-labels from students as they assess their internal states can be a way to collect labeled subject specific data necessary to obtain personalized emotional engagement models. In this paper, we outline preliminary analysis on emotional self-labels collected from students while using a learning platform.","PeriodicalId":160897,"journal":{"name":"Proceedings of the Seventh International Learning Analytics & Knowledge Conference","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Seventh International Learning Analytics & Knowledge Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3027385.3029452","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

There are some implementations towards understanding students' emotional states through automated systems with machine learning models. However, generic AI models of emotions lack enough accuracy to autonomously and meaningfully trigger any interventions. Collecting self-labels from students as they assess their internal states can be a way to collect labeled subject specific data necessary to obtain personalized emotional engagement models. In this paper, we outline preliminary analysis on emotional self-labels collected from students while using a learning platform.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
学生对个性化模型的情感自我标签
有一些实现是通过带有机器学习模型的自动化系统来理解学生的情绪状态。然而,通用的情绪人工智能模型缺乏足够的准确性,无法自主地、有意义地触发任何干预。当学生评估自己的内部状态时,从他们身上收集自我标签可以作为一种收集标签主题特定数据的方法,这些数据是获得个性化情感参与模型所必需的。在本文中,我们概述了对学生在使用学习平台时收集的情绪自我标签的初步分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An information policy perspective on learning analytics When learning is high stake How can we accelerate dissemination of knowledge and learning?: developing an online knowledge management platform for networked improvement communities LAK17 hackathon: getting the right information to the right people so they can take the right action Strategies for data and learning analytics informed national education policies: the case of Uruguay
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1