The Metagenomic Binning Problem: Clustering Markov Sequences

Grant Greenberg, Ilan Shomorony
{"title":"The Metagenomic Binning Problem: Clustering Markov Sequences","authors":"Grant Greenberg, Ilan Shomorony","doi":"10.1109/ITW44776.2019.8988939","DOIUrl":null,"url":null,"abstract":"The goal of metagenomics is to study the composition of microbial communities, typically using high-throughput shotgun sequencing. In the metagenomic binning problem, we observe random substrings (called contigs) from a mixture of genomes and want to cluster them according to their genome of origin. Based on the empirical observation that genomes of different bacterial species can be distinguished based on their tetranucleotide frequencies, we model this task as the problem of clustering N sequences generated by M distinct Markov processes, where $M\\ll N$. Utilizing the large-deviation principle for Markov processes, we establish the information-theoretic limit for perfect binning. Specifically, we show that the length of the contigs must scale with the inverse of the Chernoff Information between the two most similar species. Our result also implies that contigs should be binned using the conditional relative entropy as a measure of distance, as opposed to the Euclidean distance often used in practice.","PeriodicalId":214379,"journal":{"name":"2019 IEEE Information Theory Workshop (ITW)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Information Theory Workshop (ITW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW44776.2019.8988939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The goal of metagenomics is to study the composition of microbial communities, typically using high-throughput shotgun sequencing. In the metagenomic binning problem, we observe random substrings (called contigs) from a mixture of genomes and want to cluster them according to their genome of origin. Based on the empirical observation that genomes of different bacterial species can be distinguished based on their tetranucleotide frequencies, we model this task as the problem of clustering N sequences generated by M distinct Markov processes, where $M\ll N$. Utilizing the large-deviation principle for Markov processes, we establish the information-theoretic limit for perfect binning. Specifically, we show that the length of the contigs must scale with the inverse of the Chernoff Information between the two most similar species. Our result also implies that contigs should be binned using the conditional relative entropy as a measure of distance, as opposed to the Euclidean distance often used in practice.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
宏基因组分簇问题:聚类马尔可夫序列
宏基因组学的目标是研究微生物群落的组成,通常使用高通量鸟枪测序。在宏基因组分簇问题中,我们从混合基因组中观察随机子串(称为contigs),并希望根据它们的基因组起源对它们进行聚类。根据经验观察,不同细菌的基因组可以根据其四核苷酸频率进行区分,我们将该任务建模为由M个不同的马尔可夫过程生成的N个序列的聚类问题,其中$M\ll N$。利用马尔可夫过程的大偏差原理,建立了完美分簇的信息论极限。具体地说,我们证明了contigs的长度必须与两个最相似物种之间的Chernoff信息的逆成比例。我们的结果还表明,应该使用条件相对熵作为距离度量,而不是在实践中经常使用的欧几里得距离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Increasing the Lifetime of Flash Memories Using Multi-Dimensional Graph-Based Codes Channel Coding at Low Capacity LDPC Code Design for Delayed Bit-Interleaved Coded Modulation Multi-library Coded Caching with Partial Secrecy Optimal Broadcast Rate of a Class of Two-Sender Unicast Index Coding Problems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1