Fuzzing SMT solvers via two-dimensional input space exploration

Peisen Yao, Heqing Huang, Wensheng Tang, Qingkai Shi, Rongxin Wu, Charles Zhang
{"title":"Fuzzing SMT solvers via two-dimensional input space exploration","authors":"Peisen Yao, Heqing Huang, Wensheng Tang, Qingkai Shi, Rongxin Wu, Charles Zhang","doi":"10.1145/3460319.3464803","DOIUrl":null,"url":null,"abstract":"Satisfiability Modulo Theories (SMT) solvers serve as the core engine of many techniques, such as symbolic execution. Therefore, ensuring the robustness and correctness of SMT solvers is critical. While fuzzing is an efficient and effective method for validating the quality of SMT solvers, we observe that prior fuzzing work only focused on generating various first-order formulas as the inputs but neglected the algorithmic configuration space of an SMT solver, which leads to under-reporting many deeply-hidden bugs. In this paper, we present Falcon, a fuzzing technique that explores both the formula space and the configuration space. Combining the two spaces significantly enlarges the search space and makes it challenging to detect bugs efficiently. We solve this problem by utilizing the correlations between the two spaces to reduce the search space, and introducing an adaptive mutation strategy to boost the search efficiency. During six months of extensive testing, Falcon finds 518 confirmed bugs in CVC4 and Z3, two state-of-the-art SMT solvers, 469 of which have already been fixed. Compared to two state-of-the-art fuzzers, Falcon detects 38 and 44 more bugs and improves the coverage by a large margin in 24 hours of testing.","PeriodicalId":188008,"journal":{"name":"Proceedings of the 30th ACM SIGSOFT International Symposium on Software Testing and Analysis","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 30th ACM SIGSOFT International Symposium on Software Testing and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3460319.3464803","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Satisfiability Modulo Theories (SMT) solvers serve as the core engine of many techniques, such as symbolic execution. Therefore, ensuring the robustness and correctness of SMT solvers is critical. While fuzzing is an efficient and effective method for validating the quality of SMT solvers, we observe that prior fuzzing work only focused on generating various first-order formulas as the inputs but neglected the algorithmic configuration space of an SMT solver, which leads to under-reporting many deeply-hidden bugs. In this paper, we present Falcon, a fuzzing technique that explores both the formula space and the configuration space. Combining the two spaces significantly enlarges the search space and makes it challenging to detect bugs efficiently. We solve this problem by utilizing the correlations between the two spaces to reduce the search space, and introducing an adaptive mutation strategy to boost the search efficiency. During six months of extensive testing, Falcon finds 518 confirmed bugs in CVC4 and Z3, two state-of-the-art SMT solvers, 469 of which have already been fixed. Compared to two state-of-the-art fuzzers, Falcon detects 38 and 44 more bugs and improves the coverage by a large margin in 24 hours of testing.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过二维输入空间探索模糊SMT求解器
可满足模理论(SMT)解算器是许多技术的核心引擎,如符号执行。因此,确保SMT求解器的鲁棒性和正确性至关重要。虽然模糊测试是验证SMT解算器质量的有效方法,但我们观察到,之前的模糊测试工作只关注生成各种一阶公式作为输入,而忽略了SMT解算器的算法配置空间,这导致低估了许多深度隐藏的错误。在本文中,我们提出了Falcon,一种同时探索公式空间和组态空间的模糊技术。这两个空间的结合极大地扩大了搜索空间,使得有效地检测bug变得困难。我们利用两个空间之间的相关性来减少搜索空间,并引入自适应突变策略来提高搜索效率。在六个月的广泛测试中,Falcon在CVC4和Z3这两个最先进的SMT解决方案中发现了518个已确认的漏洞,其中469个已经修复。与两款最先进的fuzzers相比,Falcon在24小时的测试中多检测了38个和44个漏洞,并大大提高了覆盖率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Semantic table structure identification in spreadsheets Parema: an unpacking framework for demystifying VM-based Android packers TERA: optimizing stochastic regression tests in machine learning projects Empirically evaluating readily available information for regression test optimization in continuous integration RESTest: automated black-box testing of RESTful web APIs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1