Using Data Analytics to Forecast Violent Crime

Herious A. Cotton, T. Kwembe
{"title":"Using Data Analytics to Forecast Violent Crime","authors":"Herious A. Cotton, T. Kwembe","doi":"10.1109/CSCI54926.2021.00122","DOIUrl":null,"url":null,"abstract":"In this paper, we used data analytics to analyze criminal data. Prophet model, LSTM recurrent neural network model, a linear regression model, and traditional neural network model were used to predict homicide and rape in the Southeastern Cities of Memphis Tennessee, Jackson Mississippi, and New Orleans Louisiana. LSTM recurrent neural network model and traditional neural network model have smaller RMSE. Thus, LSTM recurrent neural network model and traditional neural network model performed better than the prophet and linear regression models. These promising outcomes will be significant to scholars, policymakers, and law enforcement officers.","PeriodicalId":206881,"journal":{"name":"2021 International Conference on Computational Science and Computational Intelligence (CSCI)","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Computational Science and Computational Intelligence (CSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSCI54926.2021.00122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we used data analytics to analyze criminal data. Prophet model, LSTM recurrent neural network model, a linear regression model, and traditional neural network model were used to predict homicide and rape in the Southeastern Cities of Memphis Tennessee, Jackson Mississippi, and New Orleans Louisiana. LSTM recurrent neural network model and traditional neural network model have smaller RMSE. Thus, LSTM recurrent neural network model and traditional neural network model performed better than the prophet and linear regression models. These promising outcomes will be significant to scholars, policymakers, and law enforcement officers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用数据分析预测暴力犯罪
在本文中,我们使用数据分析来分析犯罪数据。采用先知模型、LSTM递归神经网络模型、线性回归模型和传统神经网络模型对田纳西州孟菲斯市、密西西比州杰克逊市和路易斯安那州新奥尔良市的杀人和强奸事件进行了预测。LSTM递归神经网络模型与传统神经网络模型的均方根误差较小。因此,LSTM递归神经网络模型和传统神经网络模型的性能优于先知模型和线性回归模型。这些有希望的成果将对学者、政策制定者和执法人员具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Remote Video Surveillance Effects of Social Distancing Intention, Affective Risk Perception, and Cabin Fever Syndrome on Perceived Value of E-learning : Type of submission: Late Breaking Paper / Most relevant symposium: CSCI-ISED Cybersecurity Integration: Deploying Critical Infrastructure Security and Resilience Topics into the Undergraduate Curriculum Distributed Algorithms for k-Coverage in Mobile Sensor Networks Software Development Methodologies for Virtual Reality
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1