{"title":"Modeling EM Problem with Deep Neural Networks","authors":"F. Xu, Shilei Fu","doi":"10.1109/COMPEM.2018.8496532","DOIUrl":null,"url":null,"abstract":"This paper investigates the potential of using deep neural network (DNN) to model electromagnetic forward problems. As a preliminary attempt, we use a deep convolutional neural network (CNN) to fit the scattered field of an inhomogeneous circular region as calculated by a 2D Finite Element-Boundary Integral (FE-BI) model. This approach provides a new tool to fast map input to output of a specific EM problem, which builds basis for further study on solving inverse problem with DNN.","PeriodicalId":221352,"journal":{"name":"2018 IEEE International Conference on Computational Electromagnetics (ICCEM)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Computational Electromagnetics (ICCEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMPEM.2018.8496532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
This paper investigates the potential of using deep neural network (DNN) to model electromagnetic forward problems. As a preliminary attempt, we use a deep convolutional neural network (CNN) to fit the scattered field of an inhomogeneous circular region as calculated by a 2D Finite Element-Boundary Integral (FE-BI) model. This approach provides a new tool to fast map input to output of a specific EM problem, which builds basis for further study on solving inverse problem with DNN.