T. Roosta, S. Pai, Phoebus Chen, S. Sastry, S. Wicker
{"title":"Inherent Security of Routing Protocols in Ad-Hoc and Sensor Networks","authors":"T. Roosta, S. Pai, Phoebus Chen, S. Sastry, S. Wicker","doi":"10.1109/GLOCOM.2007.245","DOIUrl":null,"url":null,"abstract":"Many of the routing protocols that have been designed for wireless ad-hoc networks focus on energy-efficiency and guaranteeing high throughput in a non-adversarial setting. However, given that ad-hoc and sensor networks are deployed and left unattended for long periods of time, it is crucial to design secure routing protocols for these networks. Over the past few years, attacks on the routing protocols have been studied and a number of secure routing protocols have been designed for wireless sensor networks. However, there has not been a comprehensive study of how these protocols compare in terms of achieving security goals and maintaining high throughput. In this paper, we focus on the problem of analyzing the inherent security of routing protocols with respect to two categories: multi-path and single-path routing. Within each category, we focus on deterministic vs. probabilistic mechanisms for setting up the routes. We consider the scenario in which an adversary has subverted a subset of the nodes, and as a result, the paths going through these nodes are compromised. We present our findings through simulation results.","PeriodicalId":370937,"journal":{"name":"IEEE GLOBECOM 2007 - IEEE Global Telecommunications Conference","volume":"23 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE GLOBECOM 2007 - IEEE Global Telecommunications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOCOM.2007.245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17
Abstract
Many of the routing protocols that have been designed for wireless ad-hoc networks focus on energy-efficiency and guaranteeing high throughput in a non-adversarial setting. However, given that ad-hoc and sensor networks are deployed and left unattended for long periods of time, it is crucial to design secure routing protocols for these networks. Over the past few years, attacks on the routing protocols have been studied and a number of secure routing protocols have been designed for wireless sensor networks. However, there has not been a comprehensive study of how these protocols compare in terms of achieving security goals and maintaining high throughput. In this paper, we focus on the problem of analyzing the inherent security of routing protocols with respect to two categories: multi-path and single-path routing. Within each category, we focus on deterministic vs. probabilistic mechanisms for setting up the routes. We consider the scenario in which an adversary has subverted a subset of the nodes, and as a result, the paths going through these nodes are compromised. We present our findings through simulation results.