K. Nakano, K. Kiyokawa, Daichi Horita, Keiji Yanai, Nobuchika Sakata, Takuji Narumi
{"title":"Enchanting Your Noodles: GAN-based Real-time Food-to-Food Translation and Its Impact on Vision-induced Gustatory Manipulation","authors":"K. Nakano, K. Kiyokawa, Daichi Horita, Keiji Yanai, Nobuchika Sakata, Takuji Narumi","doi":"10.1109/VR.2019.8798336","DOIUrl":null,"url":null,"abstract":"We propose a novel gustatory manipulation interface which utilizes the cross-modal effect of vision on taste elicited with augmented reality (AR)-based real-time food appearance modulation using a generative adversarial network (GAN). Unlike existing systems which only change color or texture pattern of a particular type of food in an inflexible manner, our system changes the appearance of food into multiple types of food in real-time flexibly, dynamically and interactively in accordance with the deformation of the food that the user is actually eating by using GAN-based image-to-image translation. The experimental results reveal that our system successfully manipulates gustatory sensations to some extent and that the effectiveness depends on the original and target types of food as well as each user's food experience.","PeriodicalId":315935,"journal":{"name":"2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VR.2019.8798336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
We propose a novel gustatory manipulation interface which utilizes the cross-modal effect of vision on taste elicited with augmented reality (AR)-based real-time food appearance modulation using a generative adversarial network (GAN). Unlike existing systems which only change color or texture pattern of a particular type of food in an inflexible manner, our system changes the appearance of food into multiple types of food in real-time flexibly, dynamically and interactively in accordance with the deformation of the food that the user is actually eating by using GAN-based image-to-image translation. The experimental results reveal that our system successfully manipulates gustatory sensations to some extent and that the effectiveness depends on the original and target types of food as well as each user's food experience.