Automatic extracting and extending lexical attributes from chinese machine readable dictionary

Lei Liu, Mao-Sheng Zhong, R. Lu
{"title":"Automatic extracting and extending lexical attributes from chinese machine readable dictionary","authors":"Lei Liu, Mao-Sheng Zhong, R. Lu","doi":"10.1109/ICICISYS.2009.5358029","DOIUrl":null,"url":null,"abstract":"This paper proposes a method for automatic extracting and extending lexical attributes from a Chinese Machine Readable Dictionary (MRD). The method acquires lexical attributes such as density, reserve and ductility for the class metal from definitions in MRD, not using any instantiated objects. Compared with previous works, our method takes advantage of hyponymy semantic relation to extend classes conceptually and acquire more attributes. Although the method for acquisition of hyponyms is very simple and only a few hyponyms are acquired, experimental results show that they can help to improve the performance of attribute extraction from MRD effectively.","PeriodicalId":206575,"journal":{"name":"2009 IEEE International Conference on Intelligent Computing and Intelligent Systems","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Intelligent Computing and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICISYS.2009.5358029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a method for automatic extracting and extending lexical attributes from a Chinese Machine Readable Dictionary (MRD). The method acquires lexical attributes such as density, reserve and ductility for the class metal from definitions in MRD, not using any instantiated objects. Compared with previous works, our method takes advantage of hyponymy semantic relation to extend classes conceptually and acquire more attributes. Although the method for acquisition of hyponyms is very simple and only a few hyponyms are acquired, experimental results show that they can help to improve the performance of attribute extraction from MRD effectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从汉语机读字典中自动提取和扩展词汇属性
提出了一种从汉语机读词典中自动提取和扩展词汇属性的方法。该方法从MRD中的定义获取类金属的词法属性,如密度、保留和延展性,而不使用任何实例化对象。与以往的工作相比,我们的方法利用了下义语义关系对类进行了概念扩展,获得了更多的属性。虽然下位词的获取方法非常简单,只获取了少量的下位词,但实验结果表明,该方法可以有效地提高MRD属性提取的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Genetic algorithm for the one-commodity pickup-and-delivery vehicle routing problem An intelligent model selection scheme based on particle swarm optimization A novel blind watermark algorithm based On SVD and DCT Optimization of machining parameters using estimation of distribution algorithms Optimal control analysis on a class of hybrid systems with impulses and switches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1