Hypothesis based vehicle detection for increased simplicity in multi-sensor ACC

B. Alefs, D. Schreiber, M. Clabian
{"title":"Hypothesis based vehicle detection for increased simplicity in multi-sensor ACC","authors":"B. Alefs, D. Schreiber, M. Clabian","doi":"10.1109/IVS.2005.1505112","DOIUrl":null,"url":null,"abstract":"Systems for adaptive cruise control (ACC) become increasingly complex in case multiple sensors are used. The search space, detection error and run-time may increase substantially due to combinatory explosion of methods and data. This paper presents a method that simplifies fusion between range and vision devices using corresponding sets of hypotheses. A system is proposed that combines three modules: one uses output of a 24 GHz radar device, one uses single images from a monocular camera system; and one uses the image sequence data of the same system. The radar detection module uses condensation tracking. The vehicle detection module uses scaled symmetry detection. The three modules are fused by sharing sets of hypotheses for detection of vehicles. Results show 96% error reduction with respect to range sensing only and 63% detection increase due to tracking.","PeriodicalId":386189,"journal":{"name":"IEEE Proceedings. Intelligent Vehicles Symposium, 2005.","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Proceedings. Intelligent Vehicles Symposium, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2005.1505112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

Systems for adaptive cruise control (ACC) become increasingly complex in case multiple sensors are used. The search space, detection error and run-time may increase substantially due to combinatory explosion of methods and data. This paper presents a method that simplifies fusion between range and vision devices using corresponding sets of hypotheses. A system is proposed that combines three modules: one uses output of a 24 GHz radar device, one uses single images from a monocular camera system; and one uses the image sequence data of the same system. The radar detection module uses condensation tracking. The vehicle detection module uses scaled symmetry detection. The three modules are fused by sharing sets of hypotheses for detection of vehicles. Results show 96% error reduction with respect to range sensing only and 63% detection increase due to tracking.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于假设的车辆检测增加了多传感器ACC的简洁性
在多传感器的情况下,自适应巡航控制系统变得越来越复杂。由于方法和数据的组合爆炸,搜索空间、检测误差和运行时间可能会大大增加。本文提出了一种利用相应的假设集简化距离和视觉设备融合的方法。提出了一个由三个模块组成的系统:一个模块使用24 GHz雷达设备的输出,一个模块使用单目相机系统的单图像;一种是使用同一系统的图像序列数据。雷达探测模块采用冷凝跟踪。车辆检测模块采用比例对称检测。这三个模块通过共享车辆检测假设集来融合。结果表明,相对于距离感知,仅减少了96%的误差,由于跟踪,检测增加了63%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A statistical based UWB multipath channel model for the indoor environments WPAN applications Visual-based assistance for electric vehicle driving Cooperative driving and lane changing at blind crossings Vehicle localization on a digital map using particles filtering Past, current and future on nonlinear dynamics and noise origins of non-smooth gear transmission dynamic systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1