A parameter-free Cauchy-Schwartz information measure for independent component analysis

Lei Sun, Badong Chen, K. Toh, Zhiping Lin
{"title":"A parameter-free Cauchy-Schwartz information measure for independent component analysis","authors":"Lei Sun, Badong Chen, K. Toh, Zhiping Lin","doi":"10.1109/ICASSP.2016.7472132","DOIUrl":null,"url":null,"abstract":"Independent component analysis (ICA) by an information measure has seen wide applications in engineering. Different from traditional probability density function based information measures, a probability survival distribution based Cauchy-Schwartz information measure for multiple variables is proposed in this paper. Empirical estimation of survival distribution is parameter-free which is inherited by the estimation of the new information measure. This measure is proved to be a valid statistical independence measure and is adopted as an objective function to develop an ICA algorithm which is validated by an experiment. This work shows promising potential regarding the use of survival distribution based information measure for ICA.","PeriodicalId":165321,"journal":{"name":"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2016.7472132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Independent component analysis (ICA) by an information measure has seen wide applications in engineering. Different from traditional probability density function based information measures, a probability survival distribution based Cauchy-Schwartz information measure for multiple variables is proposed in this paper. Empirical estimation of survival distribution is parameter-free which is inherited by the estimation of the new information measure. This measure is proved to be a valid statistical independence measure and is adopted as an objective function to develop an ICA algorithm which is validated by an experiment. This work shows promising potential regarding the use of survival distribution based information measure for ICA.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
独立分量分析的无参数Cauchy-Schwartz信息测度
基于信息测度的独立分量分析(ICA)在工程中有着广泛的应用。与传统的基于概率密度函数的信息测度不同,本文提出了一种基于概率生存分布的多变量Cauchy-Schwartz信息测度。生存分布的经验估计是无参数的,由新信息测度的估计继承。该度量被证明是一种有效的统计独立性度量,并作为目标函数开发了ICA算法,并通过实验验证了该算法的有效性。这项工作显示了在ICA中使用基于生存分布的信息度量的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Self-stabilized deep neural network An acoustic keystroke transient canceler for speech communication terminals using a semi-blind adaptive filter model Data sketching for large-scale Kalman filtering Improved decoding of analog modulo block codes for noise mitigation An expectation-maximization eigenvector clustering approach to direction of arrival estimation of multiple speech sources
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1