Genetic Based ID3 Classification Algorithm Diagnosis and Prognosis of Oral Cancer

K. Jamberi, E. Ramaraj
{"title":"Genetic Based ID3 Classification Algorithm Diagnosis and Prognosis of Oral Cancer","authors":"K. Jamberi, E. Ramaraj","doi":"10.20894/IJDMTA.102.005.002.009","DOIUrl":null,"url":null,"abstract":": In order to analyse the chosen data from various points of view, data mining is used as the effective process. This process is also used to sum-up all those views into useful information. There are several types of algorithms in data mining such as Classification algorithms, Regression, Segmentation algorithms, association algorithms, sequence analysis algorithms, etc.,. The classification algorithm can be usedto bifurcate the data set from the given data set and foretell one or more discrete variables, based on the other attributes in the dataset. The ID3 (Iterative Dichotomiser 3) algorithm is an original data set S as the root node. An unutilised attribute of the data set S calculates the entropy H(S) (or Information gain IG (A)) of the attribute. Upon its selection, the attribute should have the smallest entropy (or largest information gain) value. A genetic algorithm (GA) is a heuristic quest that imitates the process of natural selection. Genetic algorithm can easily select cancer data set, from the given data set using GA operators, such as mutation, selection, and crossover. A method existed earlier (KNN+GA) was not successful for oral cancer and primary tumor. Our method of creating new algorithm GA+ID3 easily identifiesoral cancer data set from the given data set. The genetic based ID3 classification algorithm diagnosis and prognosis of oral cancer data set is identified by this paper.","PeriodicalId":414709,"journal":{"name":"International Journal of Data Mining Techniques and Applications","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Mining Techniques and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20894/IJDMTA.102.005.002.009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

: In order to analyse the chosen data from various points of view, data mining is used as the effective process. This process is also used to sum-up all those views into useful information. There are several types of algorithms in data mining such as Classification algorithms, Regression, Segmentation algorithms, association algorithms, sequence analysis algorithms, etc.,. The classification algorithm can be usedto bifurcate the data set from the given data set and foretell one or more discrete variables, based on the other attributes in the dataset. The ID3 (Iterative Dichotomiser 3) algorithm is an original data set S as the root node. An unutilised attribute of the data set S calculates the entropy H(S) (or Information gain IG (A)) of the attribute. Upon its selection, the attribute should have the smallest entropy (or largest information gain) value. A genetic algorithm (GA) is a heuristic quest that imitates the process of natural selection. Genetic algorithm can easily select cancer data set, from the given data set using GA operators, such as mutation, selection, and crossover. A method existed earlier (KNN+GA) was not successful for oral cancer and primary tumor. Our method of creating new algorithm GA+ID3 easily identifiesoral cancer data set from the given data set. The genetic based ID3 classification algorithm diagnosis and prognosis of oral cancer data set is identified by this paper.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于遗传的ID3分类算法对口腔癌诊断及预后的影响
为了从不同的角度分析所选择的数据,数据挖掘是一种有效的方法。该过程还用于将所有这些视图总结为有用的信息。在数据挖掘中有几种类型的算法,如分类算法、回归算法、分割算法、关联算法、序列分析算法等。该分类算法可用于从给定数据集中分岔数据集,并根据数据集中的其他属性预测一个或多个离散变量。ID3 (Iterative Dichotomiser 3)算法是将原始数据集S作为根节点。数据集S的未使用属性计算该属性的熵H(S)(或信息增益IG (A))。选择后,属性应该具有最小的熵(或最大的信息增益)值。遗传算法(GA)是一种模仿自然选择过程的启发式探索。遗传算法可以很容易地选择癌症数据集,从给定的数据集中使用遗传算子,如突变、选择和交叉。早期存在的一种方法(KNN+GA)对口腔癌和原发肿瘤不成功。我们创建的新算法GA+ID3很容易从给定的数据集中识别口腔癌数据集。本文提出了基于遗传的口腔癌数据集诊断与预后的ID3分类算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Crop Price Prediction Using Decision Tree Artificial Intelligence Driven Chatbot Traffic offence Management System Online Resume Builder Using Django Attendance management using face recognition and fingerprint
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1