Cardiac Abnormalities Recognition in ECG Using a Convolutional Network with Attention and Input with an Adaptable Number of Leads

Tomáš Vičar, Petra Novotna, Jakub Hejc, O. Janousek, M. Ronzhina
{"title":"Cardiac Abnormalities Recognition in ECG Using a Convolutional Network with Attention and Input with an Adaptable Number of Leads","authors":"Tomáš Vičar, Petra Novotna, Jakub Hejc, O. Janousek, M. Ronzhina","doi":"10.23919/cinc53138.2021.9662806","DOIUrl":null,"url":null,"abstract":"In this work, we present an algorithm for automatically identifying the cardiac abnormalities in ECG records with the various number of leads. The algorithm is based on the modified ResNet convolutional neural network with the attention layer. The network input is modified to allow using a single network for different lead subsets. In an official phase challenge entry, our BUTTeam reached the 15th place. In our test challenge entry, we have achieved 0.470, 0.460, 0.470, 0.460, and 0.460 of the challenge metric for 12,6,4,3 and 2 leads with ranking 14th, 14th, 11th, 15th and 11 th place, respectively. From additional evaluation of other lead subsets, the leads representing a common heart axis orientation achieved the best detection results. However, all lead subsets performed very similarly.","PeriodicalId":126746,"journal":{"name":"2021 Computing in Cardiology (CinC)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Computing in Cardiology (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/cinc53138.2021.9662806","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this work, we present an algorithm for automatically identifying the cardiac abnormalities in ECG records with the various number of leads. The algorithm is based on the modified ResNet convolutional neural network with the attention layer. The network input is modified to allow using a single network for different lead subsets. In an official phase challenge entry, our BUTTeam reached the 15th place. In our test challenge entry, we have achieved 0.470, 0.460, 0.470, 0.460, and 0.460 of the challenge metric for 12,6,4,3 and 2 leads with ranking 14th, 14th, 11th, 15th and 11 th place, respectively. From additional evaluation of other lead subsets, the leads representing a common heart axis orientation achieved the best detection results. However, all lead subsets performed very similarly.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于自适应导联注意和输入卷积网络的心电异常识别
在这项工作中,我们提出了一种算法,用于自动识别不同数量导联的ECG记录中的心脏异常。该算法基于改进的带有注意层的ResNet卷积神经网络。修改网络输入以允许对不同的引线子集使用单个网络。在正式的阶段挑战中,我们的BUTTeam获得了第15名。在我们的测试挑战条目中,我们分别在排名第14、第14、第11、第15和第11位的12、6、4、3和2个领先项中实现了0.470、0.460、0.470、0.460和0.460的挑战度量。通过对其他导联子集的额外评估,代表共同心轴方向的导联获得了最好的检测结果。然而,所有先导子集的表现都非常相似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Influence of Hydroxychloroquine Dosage on the Occurrence of Arrhythmia in COVID-19 Infected Ventricle Guinea Pig ECG Changes under the Effect of New Drug Candidate TP28b Electrocardiographic Imaging of Sinus Rhythm in Pig Hearts Using Bayesian Maximum A Posteriori Estimation Sensitivity Analysis and Parameter Identification of a Cardiovascular Model in Aortic Stenosis Semi-Supervised vs. Supervised Learning for Discriminating Atrial Flutter Mechanisms Using the 12-lead ECG
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1