J. D. González-San Román, J. Liceaga-Castro, I. Siller-Alcalá, R. Ramírez
{"title":"Speed Ripple and Dead Zone Effects Reduction in an 8/6 Switched Reluctance Motor Based on Classical Control Strategies","authors":"J. D. González-San Román, J. Liceaga-Castro, I. Siller-Alcalá, R. Ramírez","doi":"10.37394/23205.2021.20.28","DOIUrl":null,"url":null,"abstract":"This work presents two control strategies, with the objective of reducing the undesirable effects of ripple and dead zone in the speed response of a switched reluctance motor (SRM) 8/6. The first strategy aims to reduce the dead zone by applying a double integrator classical controller, while the second strategy proposes a new strategy to reduce the speed ripple, which works in conjunction with a classic PI controller. The strategy, based on digital simulations shows a reduction on the dead zone effect and speed ripple, the simulations were performed using the Matlab® / Simulink software and are based on a simplified non-linear model that has the non-linearity of Coulomb friction plus viscous friction, as well as an ideal inverter circuit.","PeriodicalId":332148,"journal":{"name":"WSEAS TRANSACTIONS ON COMPUTERS","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"WSEAS TRANSACTIONS ON COMPUTERS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/23205.2021.20.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This work presents two control strategies, with the objective of reducing the undesirable effects of ripple and dead zone in the speed response of a switched reluctance motor (SRM) 8/6. The first strategy aims to reduce the dead zone by applying a double integrator classical controller, while the second strategy proposes a new strategy to reduce the speed ripple, which works in conjunction with a classic PI controller. The strategy, based on digital simulations shows a reduction on the dead zone effect and speed ripple, the simulations were performed using the Matlab® / Simulink software and are based on a simplified non-linear model that has the non-linearity of Coulomb friction plus viscous friction, as well as an ideal inverter circuit.