{"title":"A modified fast factorized back-projection algorithm for squint UWB-SAR imaging","authors":"Lei Yang, Song Zhou, G. Bi","doi":"10.1109/APSAR.2015.7306237","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the mechanism of Fast Factorized Back-projection (FFBP) algorithm by revealing the relationship between the echoed signal and the spectrum of synthetic aperture radar (SAR) image projected on different coordinate systems. Based on the spectral analysis, a modified FFBP algorithm for squint ultra-wide bandwidth (UWB) SAR imaging is presented. Comparing with the conventional FFBP algorithm, the sub-aperture images are recursively mapped on pseudo polar coordinate rather than original polar coordinate. With the pseudo polar coordinate, the spectrum of sub-aperture SAR image is compacted in a narrower range. Thus only a low Nyquist sample rate is applied to the BP maps which dramatically reduces the redundant back-projections in operation. Simulation results are presented to validate the effectiveness of the proposed method in squint UWB-SAR case.","PeriodicalId":350698,"journal":{"name":"2015 IEEE 5th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 5th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APSAR.2015.7306237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper, we investigate the mechanism of Fast Factorized Back-projection (FFBP) algorithm by revealing the relationship between the echoed signal and the spectrum of synthetic aperture radar (SAR) image projected on different coordinate systems. Based on the spectral analysis, a modified FFBP algorithm for squint ultra-wide bandwidth (UWB) SAR imaging is presented. Comparing with the conventional FFBP algorithm, the sub-aperture images are recursively mapped on pseudo polar coordinate rather than original polar coordinate. With the pseudo polar coordinate, the spectrum of sub-aperture SAR image is compacted in a narrower range. Thus only a low Nyquist sample rate is applied to the BP maps which dramatically reduces the redundant back-projections in operation. Simulation results are presented to validate the effectiveness of the proposed method in squint UWB-SAR case.