{"title":"АВТОНОМНА СИСТЕМА ВИМІРЮВАННЯ НА ОСНОВІ МІКРОКОМП’ЮТЕРА ДЛЯ ТЕСТУВАННЯ ФОТОЕЛЕКТРИЧНИХ МОДУЛІВ","authors":"A. Gaevskii, V. Ivanchuk","doi":"10.36296/1819-8058.2022.3(70).54-61","DOIUrl":null,"url":null,"abstract":"У цій роботі розроблено конструкцію та програмні алгоритми автономної системи для тестування фотоелектричних модулів (ФМ) у реальних умовах експлуатації. Розвинутий метод обробки вольт-амперних характеристик (ВАХ) модулів дозволяє визначати параметри фотомодулів: фотострум, зворотний струм насичення pn-переходу, коефіцієнт неідеальності, послідовний та паралельний опори електричних втрат. Слід відзначити, що ці параметри зазвичай не надаються виробниками модулів, але вони суттєві для визначення поточного стану ФМ, їх діагностики, а також для коректного прогнозування роботи фотоелектричних станцій (ФЕС) у різних зовнішніх умовах. Автоматизована вимірювальна система сконструйована на базі мікрокомп’ютера Raspberry Pi B, у ній реалізований метод сканування ВАХ шляхом зміни резистивного навантаження. Комутація резисторів здійснюється MOSFET-транзисторами, якими керує певна програма, записана в пам’ять мікрокомп’ютера. Тривалість сканування всій ВАХ не перевищує кількох секунд, що дає можливість отримувати реальну ВАХ при змінних сонячної радіації і температурі, та проводити тестування ФМ в польових умовах на ФЕС. Параметри ФМ у рамках однодіодної схеми заміщення розраховуються за допомогою оригінального методу рішення системи нелінійних рівнянь за стійким ітераційним алгоритмом, який заснований на розкладанні нелінійних рівнянь за малими параметрами та забезпечує визначення параметрів не більш ніж за десять секунд.","PeriodicalId":427916,"journal":{"name":"Vidnovluvana energetika","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vidnovluvana energetika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36296/1819-8058.2022.3(70).54-61","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
У цій роботі розроблено конструкцію та програмні алгоритми автономної системи для тестування фотоелектричних модулів (ФМ) у реальних умовах експлуатації. Розвинутий метод обробки вольт-амперних характеристик (ВАХ) модулів дозволяє визначати параметри фотомодулів: фотострум, зворотний струм насичення pn-переходу, коефіцієнт неідеальності, послідовний та паралельний опори електричних втрат. Слід відзначити, що ці параметри зазвичай не надаються виробниками модулів, але вони суттєві для визначення поточного стану ФМ, їх діагностики, а також для коректного прогнозування роботи фотоелектричних станцій (ФЕС) у різних зовнішніх умовах. Автоматизована вимірювальна система сконструйована на базі мікрокомп’ютера Raspberry Pi B, у ній реалізований метод сканування ВАХ шляхом зміни резистивного навантаження. Комутація резисторів здійснюється MOSFET-транзисторами, якими керує певна програма, записана в пам’ять мікрокомп’ютера. Тривалість сканування всій ВАХ не перевищує кількох секунд, що дає можливість отримувати реальну ВАХ при змінних сонячної радіації і температурі, та проводити тестування ФМ в польових умовах на ФЕС. Параметри ФМ у рамках однодіодної схеми заміщення розраховуються за допомогою оригінального методу рішення системи нелінійних рівнянь за стійким ітераційним алгоритмом, який заснований на розкладанні нелінійних рівнянь за малими параметрами та забезпечує визначення параметрів не більш ніж за десять секунд.
本文开发了在实际运行条件下测试光伏组件(PVM)的自主系统的设计和软件算法。所开发的模块伏安特性(VAC)处理方法可确定光伏模块的参数:光电流、pn 结的反向饱和电流、不完美系数、串联和并联电阻损耗。需要指出的是,这些参数通常不是由模块制造商提供的,但它们对于确定光伏模块的当前状态、模块诊断以及正确预测光伏发电站(PVPP)在各种外部条件下的运行情况至关重要。自动测量系统是在 Raspberry Pi B 微型计算机的基础上设计的,采用了通过改变电阻负载来扫描波形的方法。电阻由 MOSFET 晶体管切换,该晶体管由存储在微型计算机内存中的特定程序控制。扫描整个波形的持续时间不超过几秒钟,因此可以在太阳辐射和温度变化的情况下获得真实波形,并在光伏电站现场对光伏组件进行测试。单二极管替换方案中的光伏组件参数是通过使用稳定的迭代算法求解非线性方程组的原始方法计算得出的,该算法基于小参数对非线性方程的扩展,并确保在不超过 10 秒的时间内确定参数。