Covariate-based stochastic parameterization of baroclinic ocean eddies

N. Verheul, J. Viebahn, D. Crommelin
{"title":"Covariate-based stochastic parameterization of baroclinic ocean eddies","authors":"N. Verheul, J. Viebahn, D. Crommelin","doi":"10.1515/mcwf-2017-0005","DOIUrl":null,"url":null,"abstract":"Abstract In this study we investigate a covariate-based stochastic approach to parameterize unresolved turbulent processes within a standard model of the idealised, wind-driven ocean circulation. We focus on vertical instead of horizontal coarse-graining, such that we avoid the subtle difficulties of horizontal coarsegraining. The corresponding eddy forcing is uniquely defined and has a clear physical interpretation related to baroclinic instability.We propose to emulate the baroclinic eddy forcing by sampling from the conditional probability distribution functions of the eddy forcing obtained from the baroclinic reference model data. These conditional probability distribution functions are approximated here by sampling uniformly from discrete reference values. We analyze in detail the different performances of the stochastic parameterization dependent on whether the eddy forcing is conditioned on a suitable flow-dependent covariate or on a timelagged covariate or on both. The results demonstrate that our non-Gaussian, non-linear methodology is able to accurately reproduce the first four statistical moments and spatial/temporal correlations of the stream function, energetics, and enstrophy of the reference baroclinic model.","PeriodicalId":106200,"journal":{"name":"Mathematics of Climate and Weather Forecasting","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of Climate and Weather Forecasting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/mcwf-2017-0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Abstract In this study we investigate a covariate-based stochastic approach to parameterize unresolved turbulent processes within a standard model of the idealised, wind-driven ocean circulation. We focus on vertical instead of horizontal coarse-graining, such that we avoid the subtle difficulties of horizontal coarsegraining. The corresponding eddy forcing is uniquely defined and has a clear physical interpretation related to baroclinic instability.We propose to emulate the baroclinic eddy forcing by sampling from the conditional probability distribution functions of the eddy forcing obtained from the baroclinic reference model data. These conditional probability distribution functions are approximated here by sampling uniformly from discrete reference values. We analyze in detail the different performances of the stochastic parameterization dependent on whether the eddy forcing is conditioned on a suitable flow-dependent covariate or on a timelagged covariate or on both. The results demonstrate that our non-Gaussian, non-linear methodology is able to accurately reproduce the first four statistical moments and spatial/temporal correlations of the stream function, energetics, and enstrophy of the reference baroclinic model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
斜压海洋涡旋基于协变量的随机参数化
在这项研究中,我们研究了一种基于协变量的随机方法来参数化理想的风驱动海洋环流标准模型中未解决的湍流过程。我们专注于垂直粗粒度而不是水平粗粒度,这样我们就避免了水平粗粒度的微妙困难。相应的涡强迫有独特的定义,并且与斜压不稳定有明确的物理解释。我们建议通过从斜压参考模型数据中得到的涡强迫的条件概率分布函数抽样来模拟斜压涡强迫。这些条件概率分布函数在这里通过从离散参考值中均匀抽样来近似。我们详细分析了随机参数化的不同性能取决于涡强迫是否取决于合适的流动相关协变量或时间延迟协变量,或两者兼而有之。结果表明,我们的非高斯、非线性方法能够准确地再现参考斜压模型的流函数、能量学和熵的前四个统计矩和时空相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Expanding Grids for Efficient Cloud Dynamics Simulations Across Scales On strongly nonlinear gravity waves in a vertically sheared atmosphere Shallow-cloud impact on climate and uncertainty: A simple stochastic model Pattern formation in clouds via Turing instabilities Estimation of seasonal boundaries using temperature data: a case of northwest part of Bangladesh
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1